Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Trần Khang
Xem chi tiết
Nguyễn Thị Lan Anh
Xem chi tiết
Nguyễn Lê Phước Thịnh
28 tháng 1 2023 lúc 0:14

a: ĐKXĐ: x^2-2x<>0 và x^2-1>0

=>(x>1 và x<>2) hoặc x<-1

b: ĐKXĐ: x+1>0 và 5-3x>0

=>x>-1 và 3x<5

=>-1<x<5/3

c: DKXĐ: 5x+3>=0 và 3-x>0

=>x>=-3/5 và x<3

=>-3/5<=x<3

d: ĐKXĐ: 4-x^2>0 và 1+x>=0

=>x^2<4 và x>=-1

=>-2<x<2 và x>=-1

=>-1<=x<2

e: ĐKXĐ: 2-3x<>0 và 1-6x>0

=>x<>2/3 và x<1/6

=>x<1/6

Lê Thu Hiền
Xem chi tiết
Mai Tiến Đỗ
Xem chi tiết
Nguyễn Thị Bích Thuỳ
Xem chi tiết
Lê Hồng Anh
Xem chi tiết
Hồng Phúc
27 tháng 8 2021 lúc 22:28

a, \(x+1\ge0\Leftrightarrow x\ge-1\)

b, \(1-2x\ge0\Leftrightarrow x\le\dfrac{1}{2}\)

c, \(\left\{{}\begin{matrix}x+1\ge0\\x-2\ge0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ge-1\\x\ge2\end{matrix}\right.\Leftrightarrow x\ge2\)

Hồng Phúc
27 tháng 8 2021 lúc 22:30

d, \(\left\{{}\begin{matrix}2-3x\ge0\\1-2x\ge0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\le\dfrac{2}{3}\\x\le\dfrac{1}{2}\end{matrix}\right.\Leftrightarrow x\le\dfrac{1}{2}\)

e, \(\left\{{}\begin{matrix}\sqrt{3}-2x\ge0\\x-1\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\le\dfrac{\sqrt{3}}{2}\\x\ne1\end{matrix}\right.\Leftrightarrow x\le\dfrac{\sqrt{3}}{2}\)

Hồng Phúc
27 tháng 8 2021 lúc 22:32

f, \(\left\{{}\begin{matrix}x-\dfrac{\sqrt{3}}{2}\ge0\\x\ge0\\\sqrt{x}-1\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ge\dfrac{\sqrt{3}}{2}\\x\ge0\\x\ne1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ge\dfrac{\sqrt{3}}{2}\\x\ne1\end{matrix}\right.\)

g, \(\left\{{}\begin{matrix}\sqrt{x}-1\ne0\\\sqrt{x}+2\ne0\\x\ge0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ge0\\x\ne1\end{matrix}\right.\)

Đức Anh Lê
Xem chi tiết
Nguyễn Lê Phước Thịnh
11 tháng 4 2023 lúc 8:45

1: ĐKXĐ: x>1/2

=>\(\dfrac{x}{\sqrt{2x-1}}+\dfrac{x}{\sqrt[4]{4x-3}}=2\)

x^2-2x+1>=0

=>x^2>=2x-1

=>\(\dfrac{x}{\sqrt{2x-1}}>=1\)

Dấu = xảy ra khi x=1

(x^2-2x+1)(x^2+2x+3)>=0

=>x^4-4x+3>=0

=>x^4>=4x-3

=>\(\dfrac{x}{\sqrt[4]{4x-3}}>=1\)

=>VT>=2

Dấu = xảy ra khi x=1

2: 4x-1=x+x+2x-1

5x-2=x+2x-1+2x-1

\(\left(\dfrac{1}{\sqrt{x}}+\dfrac{1}{\sqrt{x}}+\dfrac{1}{\sqrt{2x-1}}\right)\left(\sqrt{x}+\sqrt{x}+\sqrt{2x-1}\right)>=9\)

=>\(\dfrac{1}{\sqrt{x}}+\dfrac{1}{\sqrt{x}}+\dfrac{1}{\sqrt{2x-1}}>=\dfrac{9}{\sqrt{x}+\sqrt{x}+\sqrt{2x-1}}\)

\(\left(\sqrt{x}+\sqrt{x}+\sqrt{2x-1}\right)^2< =3\left(4x-1\right)\)

=>\(\sqrt{x}+\sqrt{x}+\sqrt{2x-1}< =\sqrt{3\left(4x-1\right)}\)

=>\(\dfrac{2}{\sqrt{x}}+\dfrac{1}{\sqrt{2x-1}}>=\dfrac{3\sqrt{3}}{\sqrt{4x-1}}\)

Tương tự, ta cũng có: \(\dfrac{1}{\sqrt{x}}+\dfrac{2}{\sqrt{2x-1}}>=\dfrac{3\sqrt{3}}{\sqrt{5x-2}}\)

=>\(\dfrac{1}{\sqrt{x}}+\dfrac{1}{\sqrt{2x-1}}>=\sqrt{3}\left(\dfrac{1}{\sqrt{4x-1}}+\dfrac{1}{\sqrt{5x-2}}\right)\)

Dấu = xảy ra khi x=1

Phương Thảo
Xem chi tiết
Phượng Dương Thị
Xem chi tiết
Akai Haruma
11 tháng 7 2023 lúc 23:48

Lời giải:
a.

\(\left\{\begin{matrix} x\neq 0\\ 2x-1\geq 0\\ x^2-3x+2=(x-1)(x-2)\neq 0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x\neq 0\\ x\geq \frac{1}{2}\\ x\neq 1; x\neq 2\end{matrix}\right.\)

$\Leftrightarrow x\geq \frac{1}{2}; x\neq 1; x\neq 2$
b. \(\left\{\begin{matrix} x^2-1=(x-1)(x+1)\neq 0\\ 7-2x\geq 0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x\neq \pm 1\\ x\leq \frac{7}{2}\end{matrix}\right.\)

c.

\(\left\{\begin{matrix} x\neq 0\\ 4-2x+x^2\neq 0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x\neq 0\\ (x-1)^2+3\neq 0\end{matrix}\right.\Leftrightarrow x\neq 0\)

d.

\(\left\{\begin{matrix} 25-x^2=(5-x)(5+x)\geq 0\\ x\geq 0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} -5\leq x\leq 5\\ x\geq 0\end{matrix}\right.\Leftrightarrow 0\leq x\leq 5\)

 

Nguyễn Đức Trí
11 tháng 7 2023 lúc 22:12

a) \(y=\dfrac{1}{x}-\dfrac{\sqrt[]{2x-1}}{x^2-3x+2}\)

Điều kiện \(\) \(2x-1\ge0;x\ne0;x^2-3x+2\ne0\)

\(\Leftrightarrow x\ge\dfrac{1}{2};x\ne0;\left(x-1\right)\left(x-2\right)\ne0\)

\(\Leftrightarrow x\ge\dfrac{1}{2};x\ne0;x\ne1;x\ne2\)

Nguyễn Đức Trí
11 tháng 7 2023 lúc 23:49

a) \(x\ge\dfrac{1}{2};x\ne1;x\ne2\)

b) \(x\le\dfrac{7}{2};x\ne\pm1\)

c) \(x\ne0\)

d) \(0\le x\le5\)