Tìm điều kiện để các biểu thức sau xác định
a)\(\sqrt{x+1}-\dfrac{1}{2}\)
b)\(2.\sqrt{1-2x}-\dfrac{\sqrt{3}-1}{4}\)
c)\(\sqrt{x+1}-\sqrt{x-2}\)
d)\(\sqrt{2-3x}-\sqrt{1-2x}\)
e)\(2.\sqrt{\sqrt{3}-2x}+\dfrac{1}{x-1}\)
f)\(\dfrac{1}{2}.\sqrt{x-\dfrac{\sqrt{3}}{2}}-\dfrac{1}{\sqrt{x}-1}\)
g)\(\dfrac{1}{\sqrt{x}-1}-\dfrac{1}{\sqrt{x}+2}\)
h)\(\dfrac{1}{\sqrt{x}+1}-\dfrac{1}{\sqrt{x^2+2}}\)
Rút gọn:
A=\(\left(\dfrac{1}{1-\sqrt{x}}-\dfrac{1}{\sqrt{x}}\right)\left(\dfrac{2x+\sqrt{x}-1}{1-x}+\dfrac{2x\sqrt{x}+x-\sqrt{x}}{1+x\sqrt{x}}\right)\)
Rút gọn:
\(\left(\dfrac{1}{1-\sqrt{x}}-\dfrac{1}{\sqrt{x}}\right)\left(\dfrac{2x+\sqrt{x}-1}{1-x}+\dfrac{2x\sqrt{x}+x-\sqrt{x}}{1+x\sqrt{x}}\right)\)
Rút gọn: \(1-\left(\dfrac{2x-1+\sqrt{x}}{1-x}+\dfrac{2x\sqrt{x}+x-\sqrt{x}}{1+x\sqrt{ }}x\right)\dfrac{\left(x-\sqrt{x}\right)\left(1-\sqrt{x}\right)}{2\sqrt{x}-1}\)
Cho P= \((\dfrac{1}{1-\sqrt{2}}-\dfrac{1}{\sqrt{x}}):(\dfrac{2x+\sqrt{x}-1}{\sqrt{x}-x\sqrt{x}}+\dfrac{2x\sqrt{x}+x-\sqrt{x}}{\sqrt{x}+x^{2}})\)
a) Rút gọn P
b) so sánh P với \(\dfrac{3}{4}\).
c) tìm x để P=1
P=\(\left(\dfrac{1}{1-\sqrt{x}}-\dfrac{1}{\sqrt{x}}\right)\):\(\left(\dfrac{2x+\sqrt{x}-1}{1-x}+\dfrac{2x\sqrt{x}+x-\sqrt{x}}{1+x\sqrt{x}}\right)\)
Rút gọnP
Tính giá trị của P với \(x=7-4\sqrt{3}\)
1) Trong các đẳng thức sau, đẳng thức nào đúng
a) \(x\sqrt{2}=\sqrt{2x}\)
b) \(x\sqrt{2}=\sqrt{2x^2}\) với x2 > 0
c) \(x\sqrt{\dfrac{2}{x}}=\sqrt{2x^2}\)
d) \(x\sqrt{\dfrac{2}{x}}=-\sqrt{2x}\)
2) Với x > y > 0 thì biểu thức \(\dfrac{1}{y-x}\sqrt{2x^2.\left(x-y\right)^2}\) được rút gọn là
Tìm x
a)\(\sqrt{2x-1}=3\)
b)\(\sqrt{1-3x}=\dfrac{1}{2}\)
c)\(\sqrt{\left(x-1\right)^2}=\dfrac{1}{2}\)
d)\(\sqrt{\left(1+2x\right)^2}=\dfrac{\sqrt{3}}{2}\)
e)\(\sqrt{\left(1-2x\right)^2=|x-1|}\)
Tìm `ĐKXĐ`:
\(\sqrt{\dfrac{-5}{6+x}}\)
\(\sqrt{\dfrac{-2}{6-x}}\)
\(\sqrt{\dfrac{-x+3}{-6}}\)
\(\sqrt{\dfrac{7x-1}{-9}}\)
\(\sqrt{\dfrac{x+2}{x^2+2x+1}}\)
\(\sqrt{\dfrac{x-2}{x^2-2x+4}}\)