Chứng minh :
\(\dfrac{2}{3^2}
+\dfrac{2}{4^2}+\dfrac{2}{5^2}+.....+\dfrac{2}{2016^2}< 1\)
help me
Cho \(A=\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+................+\dfrac{1}{9^2}\)
Chứng minh \(\dfrac{2}{5}< A< \dfrac{8}{9}\)
Help me!!!!!!!!!!! tôi đang cần gấp!!!
câu này dễ.đầu óc phải linh hoat lên chứ cậu
Ta có : A=\(\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{9^2}\)
\(\Rightarrow A=\dfrac{1}{2.2}+\dfrac{1}{3.3}+\dfrac{1}{4.4}+...+\dfrac{1}{9.9}\)
\(\Rightarrow A=\dfrac{1}{2.2}+\dfrac{1}{3.3}+\dfrac{1}{4.4}+...+\dfrac{1}{9.9}\)<\(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{8.9}\)
\(\Rightarrow A< \dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{8}-\dfrac{1}{9}\)
\(\Rightarrow A< \dfrac{1}{1}-\dfrac{1}{9}\)
\(\Rightarrow A< \dfrac{9}{9}-\dfrac{1}{9}\)
\(\Rightarrow A< \dfrac{8}{9}\) (1)
\(\Rightarrow A=\dfrac{1}{2.2}+\dfrac{1}{3.3}+\dfrac{1}{4.4}+...+\dfrac{1}{9.9}\)>\(\dfrac{1}{2.3}+\dfrac{1}{3.4}+\dfrac{1}{4.5}+...+\dfrac{1}{9.10}\)
\(\Rightarrow A>\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+...+\dfrac{1}{9}-\dfrac{1}{10}\)
\(\Rightarrow A>\dfrac{1}{2}-\dfrac{1}{10}\)
\(\Rightarrow A>\dfrac{5}{10}-\dfrac{1}{10}\)
\(\Rightarrow A>\dfrac{4}{10}\)
\(\Rightarrow A>\dfrac{2}{5}\) (2)
Từ (1) và (2)\(\Rightarrow\dfrac{2}{5}< A< \dfrac{8}{9}\)
Chứng minh rằng: \(B=1-\dfrac{1}{2^2}-\dfrac{1}{3^2}-\dfrac{1}{4^2}-...-\dfrac{1}{2004^2}>\dfrac{1}{2004}\)
Help me!
Tao có: \(B=1-\dfrac{1}{2^2}-\dfrac{1}{3^2}-\dfrac{1}{4^2}-...-\dfrac{1}{2004^2}\)
\(B>1-\left(\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+...+\dfrac{1}{2003\cdot2004}\right)\)
\(B>1-\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{2003}-\dfrac{1}{2004}\right)\)
\(B>1-\left(1-\dfrac{1}{2004}\right)=1-1+\dfrac{1}{2004}=\dfrac{1}{2004}\left(đpcm\right)\)
Cho \(M=\dfrac{1}{1+2+3}+\dfrac{1}{1+2+3+4}+...................+\dfrac{1}{1+2+3+...........+59}\)
Chứng minh \(M< \dfrac{2}{3}\)
Help me!!!!!!!!!!!!!!
\(M=\dfrac{1}{1+2+3}+\dfrac{1}{1+2+3+4}+...+\dfrac{1}{1+2+3+...+59}\\ =\dfrac{1}{\dfrac{3\cdot4}{2}}+\dfrac{1}{\dfrac{4\cdot5}{2}}+...+\dfrac{1}{\dfrac{59\cdot60}{2}}\\ =\dfrac{2}{3\cdot4}+\dfrac{2}{4\cdot5}+...+\dfrac{2}{59\cdot60}\\ =2\left(\dfrac{1}{3\cdot4}+\dfrac{1}{4\cdot5}+...+\dfrac{1}{59\cdot60}\right)\\ =2\left(\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+...+\dfrac{1}{59}-\dfrac{1}{60}\right)\\ =2\cdot\dfrac{19}{60}\\ =\dfrac{38}{60}< \dfrac{40}{60}=\dfrac{2}{3}\)
Cho:
A=\(\left(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+\dfrac{1}{5}+...+\dfrac{1}{2016}+\dfrac{1}{2017}\right)\)
B=\(\dfrac{2016}{1}+\dfrac{2015}{2}+\dfrac{2014}{3}+...+\dfrac{3}{2014}+\dfrac{2}{2015}+\dfrac{1}{2016}\)
Tính \(\dfrac{B}{A}\)
giúp mình nha, mình đang cần gấp gấp gấp lắm....!HELP ME!!!
\(B=\dfrac{2016}{1}+\dfrac{2015}{2}+\dfrac{2014}{3}+...+\dfrac{3}{2014}+\dfrac{2}{2015}+\dfrac{1}{2016}\)
\(B=2016+\dfrac{2015}{2}+\dfrac{2014}{3}+....+\dfrac{3}{2014}+\dfrac{2}{2015}+\dfrac{1}{2016}\)
\(B=1+\left(\dfrac{2015}{2}+1\right)+\left(\dfrac{2014}{3}+1\right)+...+\left(\dfrac{3}{2014}+1\right)+\left(\dfrac{2}{2015}+1\right)+\left(\dfrac{1}{2016}+1\right)\)
\(B=\dfrac{2017}{2017}+\dfrac{2017}{2}+\dfrac{2017}{3}+....+\dfrac{2017}{2014}+\dfrac{2017}{2015}+\dfrac{2017}{2016}\)
\(B=2017\left(\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2014}+\dfrac{1}{2015}+\dfrac{1}{2016}+\dfrac{1}{2017}\right)\)
\(\dfrac{B}{A}=\dfrac{2017\left(\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2014}+\dfrac{1}{2015}+\dfrac{1}{2016}+\dfrac{1}{2017}\right)}{\dfrac{1}{2}+\dfrac{1}{3}+....+\dfrac{1}{2014}+\dfrac{1}{2015}+\dfrac{1}{2016}+\dfrac{1}{2017}}=2017\)
\(\dfrac{B}{A}=\dfrac{\dfrac{2016}{1}+\dfrac{2015}{2}+\dfrac{2014}{3}+...+\dfrac{3}{2014}+\dfrac{2}{2015}+\dfrac{1}{2016}}{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+\dfrac{1}{5}+...+\dfrac{1}{2016}+\dfrac{1}{2017}}\)
\(=\dfrac{1+\left(\dfrac{2015}{2}+1\right)+\left(\dfrac{2014}{3}+1\right)+...+\left(\dfrac{2}{2015}+1\right)+\left(\dfrac{1}{2016}+1\right)}{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+\dfrac{1}{5}+...+\dfrac{1}{2016}+\dfrac{1}{2017}}\)
\(=\dfrac{\dfrac{2017}{2017}+\left(\dfrac{2015}{2}+\dfrac{2}{2}\right)+\left(\dfrac{2014}{3}+\dfrac{3}{3}\right)+...+\left(\dfrac{1}{2016}+\dfrac{2016}{2016}\right)}{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2016}+\dfrac{1}{2017}}\)
\(=\dfrac{2017\left(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2016}+\dfrac{1}{2017}\right)}{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2016}+\dfrac{1}{2017}}\)
\(=2017\)
Vậy \(\dfrac{B}{A}=2017\)
Cho \(A=\dfrac{2}{3^2}+\dfrac{2}{5^2}+\dfrac{2}{7^2}+.............+\dfrac{2}{2007^2}\)
Chứng minh \(A< \dfrac{1003}{2008}\)
Help me!!!!!!!!!!
Xét p/s A=\(\dfrac{2}{3^2}+\dfrac{2}{5^2}+...........+\dfrac{2}{2007^2}\)
A<\(\dfrac{2}{2.4}+\dfrac{2}{4.6}+...........+\dfrac{2}{2006.2008}\)
A<\(\dfrac{1}{2}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{6}+...+\dfrac{1}{2006}-\dfrac{1}{2008}\)
A<\(\dfrac{1}{2}-\dfrac{1}{2008}\)
A<\(\dfrac{1003}{2008}\)
Ta có đpcm
Ta thấy với k \(\in\) N* thì k2 > (k - 1)(k + 1).
Thật vậy, ta có (k - 1)(k + 1) = k(k + 1) - (k + 1) = k2 + k - k - 1 = k2 - 1 < k2.
Từ đó suy ra: 32 > 2 . 4; 52 > 4 . 6; 72 > 6 . 8;...; 20072 > 2006 . 2008.
\(\Rightarrow\dfrac{2}{3^2}< \dfrac{2}{2.4};\dfrac{2}{5^2}< \dfrac{2}{4.6};\dfrac{2}{7^2}< \dfrac{2}{6.8};...;\dfrac{2}{2007^2}< \dfrac{2}{2006.2008}\)
\(\Rightarrow A< \dfrac{2}{2.4}+\dfrac{2}{4.6}+\dfrac{2}{6.8}+...+\dfrac{2}{2006.2008}\)
\(\Rightarrow A< \dfrac{1}{2}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{8}+...+\dfrac{1}{2006}-\dfrac{1}{2008}\)
\(\Rightarrow A< \dfrac{1}{2}-\dfrac{1}{2008}=\dfrac{1003}{2008}\)
cho M = \(\dfrac{1}{1^2}+\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{2015^2}+\dfrac{1}{2016^2}\)
chứng minh m là số từ nhiên
giúp mk vs các bn ơi mk cần gấp
Bạn ơi thiếu đề rồi, cái biểu thức này không tính được đâu , mình nghĩ thế
2. Chứng minh rằng
\(\dfrac{1}{5^2}\)+\(\dfrac{1}{6^2}\)+\(\dfrac{1}{7^2}\)+......+\(\dfrac{1}{2007^2}\) < \(\dfrac{1}{4}\)
Help me !!
\(\dfrac{1}{5^2}+\dfrac{1}{6^2}+...+\dfrac{1}{2007^2}< \dfrac{1}{4.5}+\dfrac{1}{5.6}+...+\dfrac{1}{2006.2007}\)
\(=\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}+...+\dfrac{1}{2006}-\dfrac{1}{2007}\)
\(=\dfrac{1}{4}-\dfrac{1}{2007}< \dfrac{1}{4}\)
\(\Rightarrow\dfrac{1}{5^2}+\dfrac{1}{6^2}+...+\dfrac{1}{2007^2}< \dfrac{1}{4}\left(đpcm\right)\)
Vậy...
Đặt \(A=\dfrac{1}{5^2}+\dfrac{1}{6^2}+\dfrac{1}{7^2}+...+\dfrac{1}{2007^2}\).
Ta thấy:
\(\dfrac{1}{5^2}< \dfrac{1}{4\cdot5}\)
\(\dfrac{1}{6^2}< \dfrac{1}{5\cdot6}\)
\(\dfrac{1}{7^2}< \dfrac{1}{6\cdot7}\)
............................
\(\dfrac{1}{2007^2}< \dfrac{1}{2006\cdot2007}\)
\(\Rightarrow\dfrac{1}{5^2}+\dfrac{1}{6^2}+\dfrac{1}{7^2}+...+\dfrac{1}{2007^2}< \dfrac{1}{4\cdot5}+\dfrac{1}{5\cdot6}+\dfrac{1}{6\cdot7}+...+\dfrac{1}{2006\cdot2007}\)
\(\Rightarrow A< \dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{7}+...+\dfrac{1}{2006}-\dfrac{1}{2007}\)
\(\Rightarrow A< \dfrac{1}{4}-\dfrac{1}{2007}\)
\(\Rightarrow A< \dfrac{1}{4}\left(đpcm\right)\)
Cho \(B=\dfrac{1}{4^2}+\dfrac{1}{6^2}+\dfrac{1}{8^2}+..................+\dfrac{1}{2006^2}\). Chứng minh rằng \(B< \dfrac{334}{2007}\)
Help me!!!!!!!!!!!!!!!
Cho A = \(\dfrac{1}{5}+\dfrac{1}{5^2}+\dfrac{1}{5^3}+...+\dfrac{1}{5^{2014}}\). Chứng minh A < \(\dfrac{1}{4}\)
Help me!
A=\(\dfrac{1}{5}+\dfrac{1}{5^2}+\dfrac{1}{5^3}+...+\dfrac{1}{5^{2014}}\)
5A=\(\dfrac{5}{5}+\dfrac{5}{5^2}+\dfrac{5}{5^3}+...+\dfrac{5}{5^{2014}}\)
5A=\(1+\dfrac{1}{5}+\dfrac{1}{5^2}+...+\dfrac{1}{5^{2013}}\)
5A-A=\(\left(1+\dfrac{1}{5}+\dfrac{1}{5^2}+...+\dfrac{1}{5^{2013}}\right)-\left(\dfrac{1}{5}+\dfrac{1}{5^2}+\dfrac{1}{5^3}+...+\dfrac{1}{5^{2014}}\right)\)4A=\(1-\dfrac{1}{5^{2014}}\)
4A=\(\dfrac{5^{2014}-1}{5^{2014}}\)
A=\(\dfrac{5^{2014}-1}{5^{2014}}:4\)
A=\(\dfrac{5^{2014}-1}{5^{2014}}.\dfrac{1}{4}\)
\(\Rightarrow\)A<\(\dfrac{1}{4}\)
Ta có:
A = \(\dfrac{1}{5}+\dfrac{1}{5^2}+\dfrac{1}{5^3}+....+\dfrac{1}{5^{2014}}\)
\(\Rightarrow\) 5A = 5\(\left(\dfrac{1}{5}+\dfrac{1}{5^2}+\dfrac{1}{5^3}+....+\dfrac{1}{5^{2014}}\right)\)
\(\Rightarrow\) 5A = \(\dfrac{5}{5}+\dfrac{5}{5^2}+\dfrac{5}{5^3}+....+\dfrac{5}{5^{2014}}\)
\(\Rightarrow\) 5A = \(1+\dfrac{1}{5}+\dfrac{1}{5^2}+....+\dfrac{1}{5^{2013}}\)
\(\Rightarrow\)\(\left(1+\dfrac{1}{5}+\dfrac{1}{5^2}+....+\dfrac{1}{5^{2013}}\right)\)-\(\left(\dfrac{1}{5}+\dfrac{1}{5^2}+\dfrac{1}{5^3}+....+\dfrac{1}{5^{2014}}\right)\) = 5A - A
\(\Rightarrow\)4A= 1 - \(\dfrac{1}{5^{2014}}\)
\(\Rightarrow\) A =\(\dfrac{5^{2014}-1}{5^{2014}}\) : 4
Vậy A =\(\dfrac{5^{2014}-1}{5^{2014}}\) : 4