CMR : \(1.3.5.7.....99=\dfrac{51}{2}.\dfrac{52}{2}.\dfrac{53}{2}.....\dfrac{100}{2}\)
So sánh A và B :
\(A=1.3.5.7.....99\)
\(B=\dfrac{51}{2}.\dfrac{52}{2}.\dfrac{53}{2}.....\dfrac{100}{2}\)
Lời giải:
\(A=1.3.5.7...99=\frac{1.2.3.4...99.100}{2.4.6.8.100}=\frac{1.2.3...99.100}{(1.2)(2.2)(3.2)...(50.2)}\)
\(=\frac{1.2.3...99.100}{(1.2.3...50).2^{50}}=\frac{51.52...100}{2^{50}}=\frac{51}{2}.\frac{52}{2}....\frac{100}{2}=B\)
So sánh :
a) A= \(3^{500}+31^{11}\) và b=\(7^{300}+17^{14}\)
b) B=1.3.5.7.....99 và D=\(\dfrac{51}{2}.\dfrac{52}{2}.\dfrac{53}{2}.....\dfrac{100}{2}\)
b)Ta có :
\(A=1.3.5...........99\)
\(\Rightarrow A=\dfrac{\left(1.3.7.9.............99\right)\left(2.4.6.8........100\right)}{2.4.6.8.............100}\)
\(\Rightarrow A=\dfrac{1.2.3.4.............100}{2.4.6.8................100}\)
\(\Rightarrow A=\dfrac{1.2.3.4..................100}{\left(2.1\right)\left(2.2\right)...............\left(2.50\right)}\)
\(\Rightarrow A=\dfrac{51.52.53...........................100}{2.2.2.2.............................2}\)
\(\Rightarrow A=\dfrac{51}{2}.\dfrac{52}{2}.\dfrac{53}{2}.............\dfrac{100}{2}\)
\(\Rightarrow A=D\)
~ Chúc bn học tốt ~
cmr 1.3.5....99\(=\dfrac{51}{2}.\dfrac{52}{2}...\dfrac{100}{2}\)
\(1\cdot3\cdot5\cdot...\cdot99=\dfrac{\left(1\cdot3\cdot5\cdot...\cdot99\right)\cdot\left(2\cdot4\cdot6\cdot...\cdot100\right)}{2\cdot4\cdot6\cdot...\cdot100}\)
\(=\dfrac{1\cdot3\cdot5\cdot...\cdot2\cdot4\cdot6\cdot...\cdot100}{1\cdot2\cdot3\cdot...\cdot50\cdot2\cdot2\cdot...\cdot2}=\dfrac{51}{2}\cdot\dfrac{52}{2}\cdot...\cdot\dfrac{100}{2}\)
\(\dfrac{1}{51}+\dfrac{1}{52}+\dfrac{1}{53}+...+\dfrac{1}{100}:\dfrac{1}{1-2}+\dfrac{1}{2-3}+...+\dfrac{1}{99-100}\)
Tính B-C , biết B = 1.3.5. ... .99 và C = \(\dfrac{51}{2}.\dfrac{52}{2}.\dfrac{53}{2}.......\dfrac{100}{2}\) . giúp mk nhanh nha
- Ta có : `C=51/2 * 52/2 * 53/2* ... * 100/2`
`-> C=(51.52.53...100)/(2^50)`
`-> C=((1.2.3...50).(51.52.53...100))/((1.2.3...50).2^50)`
`-> C=(1.2.3...100)/((1.2).(2.2).(3.2)...(50.2))`
`-> C=(1.2.3...100)/(2.4.6...100)`
`-> C=1.3.5.7...99`
- Từ đó ta có :
`B-C=1.3.5.7...99-1.3.5.7...99=0`
- Vậy `B-C=0`
CMR \(\dfrac{51}{2}.\dfrac{52}{2}...\dfrac{100}{2}=1.3.5...99\)
Ta có:
\(\dfrac{51}{2}\cdot\dfrac{52}{2}\cdot...\cdot\dfrac{100}{2}\\ =\dfrac{51\cdot52\cdot...\cdot100}{2^{50}}\\ =\dfrac{\left(1\cdot2\cdot...\cdot50\right)\left(51\cdot52\cdot...\cdot100\right)}{\left(1\cdot2\cdot...\cdot50\right)\cdot2^{50}}\\ =\dfrac{1\cdot2\cdot3\cdot...\cdot100}{2\cdot4\cdot6\cdot...\cdot100}\\ =1\cdot3\cdot5\cdot...\cdot99\)
Cho \(S=\dfrac{1}{51}+\dfrac{1}{52}+\dfrac{1}{53}+...+\dfrac{1}{99}+\dfrac{1}{100}\)
So sánh S với\(\dfrac{1}{2}\)
SO SÁNH A VÀ B
A=\(\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{99}-\dfrac{1}{100}\)
B=\(\dfrac{1}{51}+\dfrac{1}{52}+\dfrac{1}{53}+...+\dfrac{1}{100}\)
\(A=\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{99}-\dfrac{1}{100}\)
\(A=\left(\dfrac{1}{1}+\dfrac{1}{2}+...+\dfrac{1}{100}\right)-2\cdot\dfrac{1}{2}-2\cdot\dfrac{1}{4}-...-2\cdot\dfrac{1}{100}\)
\(A=\left(\dfrac{1}{1}+\dfrac{1}{2}+...+\dfrac{1}{100}\right)-\dfrac{1}{1}-\dfrac{1}{2}-...-\dfrac{1}{50}\)
\(A=\dfrac{1}{51}+\dfrac{1}{52}+...+\dfrac{1}{100}=B\)
\(\Rightarrow A=B\)
tớ giải chi tiết hơn nhá:
A=\(\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{99}-\dfrac{1}{100}\)
A=(\(\dfrac{1}{1}+\dfrac{1}{3}+...+\dfrac{1}{99}-\left(\dfrac{1}{2}+\dfrac{1}{4}+...+\dfrac{1}{100}\right)\)
A=\(\left(\dfrac{1}{1}+\dfrac{1}{3}+...+\dfrac{1}{99}\right)+\left(\dfrac{1}{2}+\dfrac{1}{4}+...+\dfrac{1}{100}\right)-2\left(\dfrac{1}{2}+\dfrac{1}{4}+...+\dfrac{1}{100}\right)\)
A=\(\dfrac{1}{51}+\dfrac{1}{52}+...+\dfrac{1}{100}=B\)
Vậy A=B
a=(\(\dfrac{1}{2}+\dfrac{1}{12}+\dfrac{1}{30}+...+\dfrac{1}{9900}\)):(\(\dfrac{-6}{51}-\dfrac{6}{52}-\dfrac{6}{53}-...-\dfrac{6}{100}\))
giúp mik giải nhé
cảm ơn !