Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Vân Anh Lê
Xem chi tiết

a/ \(x=\dfrac{-5}{12}\)

b/ \(x\approx-1,9526\)

c/ \(x=\dfrac{21-i\sqrt{199}}{10}\)

d/ \(x=\dfrac{-20}{13}\)

ILoveMath
25 tháng 7 2021 lúc 9:15

a) (x-2)3+6(x+1)2-x3+12=0

⇒ x3-6x2+12x-8+6(x2+2x+1)-x3+12=0

⇒ x3-6x2+12x-8+6x2+12x+6-x3+12=0

⇒ 24x+10=0

⇒ 24x=-10

⇒ x=-5/12

Akai Haruma
25 tháng 7 2021 lúc 9:23

a.

PT \(\Leftrightarrow x^3-6x^2+12x-8+6(x^2+2x+1)-x^3+12=0\)

\(\Leftrightarrow x^3-6x^2+12x-8+6x^2+12x+6-x^3+12=0\)

\(\Leftrightarrow 24x+10=0\Leftrightarrow x=\frac{-5}{12}\)

b. Bạn xem lại đề, nghiệm khá xấu không phù hợp với mức độ tổng thể của bài.

c.

PT $\Leftrightarrow (4x^2+12x+9)+(x^2-1)=5(x^2+4x+4)+(x^2-4x-5)+9(x^2+6x+9)$
$\Leftrightarrow 10x^2+42x+64=0$

$\Leftrightarrow x^2+(3x+7)^2=-15< 0$ (vô lý) 

Do đó pt vô nghiệm.

d.

PT $\Leftrightarrow (1-6x+9x^2)-(9x^2-17x-2)=(9x^2-16)-9(x^2+6x+9)$

$\Leftrightarrow 11x+3=-54x-97$

$\Leftrightarrow 65x=-100$

$\Leftrightarrow x=\frac{-20}{13}$

nguyenthitulinh
Xem chi tiết
hoanghuongly
Xem chi tiết
Trần Việt Linh
2 tháng 8 2016 lúc 13:27

\(\frac{1}{\left(x-1\right)x}+\frac{1}{\left(x-2\right)\left(x-1\right)}+\frac{1}{\left(x-3\right)\left(x-2\right)}+\frac{1}{\left(x-4\right)\left(x-3\right)}=\frac{x}{x^2-4x}\)

\(\Leftrightarrow\)\(\frac{1}{x-1}-\frac{1}{x}+\frac{1}{x-2}-\frac{1}{x-1}+\frac{1}{x-3}-\frac{1}{x-2}+\frac{1}{x-4}-\frac{1}{x-3}=\frac{x}{x\left(x-4\right)}\)

\(\Leftrightarrow\)\(-\frac{1}{x}+\frac{1}{x-4}=\frac{1}{x-4}\)

\(\Leftrightarrow\)\(\frac{-\left(x-4\right)+x}{x\left(x-4\right)}=\frac{x}{x\left(x-4\right)}\)

\(\Leftrightarrow\)\(4-x+x=x\)

\(\Leftrightarrow x=4\)

Nguyễn Thị Mai Huyền (B...
12 tháng 8 2016 lúc 15:02

lo nói mk làm cách lâu chứ m cx hỏi người khác!!!!!!!!!!! 

 

Phạm Tú Uyên
Xem chi tiết
Công Nghệ Speed
Xem chi tiết
Min
4 tháng 12 2015 lúc 21:32

\(\frac{1}{x\left(x+1\right)}+\frac{1}{\left(x+1\right)\left(x+2\right)}+\frac{1}{\left(x+\right)\left(x+3\right)}+...+\frac{1}{\left(x+2015\right)\left(x+2016\right)}=\frac{1}{x+2016}\)

\(\frac{1}{x}-\frac{1}{x+1}+\frac{1}{x+1}-\frac{1}{x+2}+\frac{1}{x+2}-\frac{1}{x+3}+...+\frac{1}{x+2015}-\frac{1}{x+2016}=\frac{1}{x+2016}\)

\(\frac{1}{x}-\frac{1}{x+2016}=\frac{1}{x+2016}\)

\(\frac{1}{x}-\frac{1}{x+2016}-\frac{1}{x+2016}=0\)

\(\frac{1}{x}-\frac{2x}{x+2016}=0\)

\(\frac{x+2016}{x\left(x+2016\right)}-\frac{2x}{x\left(x+2016\right)}=0\)

\(\frac{x+2016-2x}{x\left(x+2016\right)}=0\Leftrightarrow2016-x=0\Leftrightarrow x=2016\)

Choon_Hee
Xem chi tiết
Nguyễn Việt Lâm
8 tháng 1 2024 lúc 14:19

a.

\(10⋮\left(x-1\right)\)

\(\Rightarrow x-1=Ư\left(10\right)\)

\(\Rightarrow x-1=\left\{-10;-5;-2;-1;1;2;5;10\right\}\)

\(\Rightarrow x=\left\{-9;-4;-1;0;2;3;6;11\right\}\)

b.

\(\left(x+5\right)⋮\left(x-2\right)\Rightarrow\left(x-2\right)+7⋮x-2\)

\(\Rightarrow7⋮x-2\)

\(\Rightarrow x-2=Ư\left(7\right)=\left\{-7;-1;1;7\right\}\)

\(\Rightarrow x=\left\{-5;1;3;9\right\}\)

c.

\(\left(3x+8\right)⋮\left(x-1\right)\)

\(\Rightarrow\left(3x-3+11\right)⋮\left(x-1\right)\)

\(\Rightarrow3\left(x-1\right)+11⋮x-1\)

\(\Rightarrow11⋮\left(x-1\right)\)

\(\Rightarrow x-1=Ư\left(11\right)=\left\{-11;-1;1;11\right\}\)

\(\Rightarrow x=\left\{-10;0;2;12\right\}\)

Diệp Thiên Giai
Xem chi tiết
Lightning Farron
10 tháng 11 2016 lúc 18:13

Bài 1:

\(\left|x+\frac{1}{2}\right|+\left|x+\frac{1}{6}\right|+...+\left|x+\frac{1}{101}\right|=101x\)

Ta thấy:

\(VT\ge0\Rightarrow VP\ge0\Rightarrow101x\ge0\Rightarrow x\ge0\)

\(\Rightarrow\left(x+\frac{1}{2}\right)+\left(x+\frac{1}{6}\right)+...+\left(x+\frac{1}{101}\right)=101x\)

\(\Rightarrow\left(x+x+...+x\right)+\left(\frac{1}{2}+\frac{1}{6}+...+\frac{1}{101}\right)=0\)

\(\Rightarrow10x+\left(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{10.11}\right)=0\)

\(\Rightarrow10x+\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{10}-\frac{1}{11}\right)=0\)

\(\Rightarrow10x+\left(1-\frac{1}{11}\right)=0\)

\(\Rightarrow10x+\frac{10}{11}=0\)

\(\Rightarrow10x=-\frac{10}{11}\Rightarrow x=-\frac{1}{11}\)(loại,vì x\(\ge\)0)

 

 

Lightning Farron
10 tháng 11 2016 lúc 18:18

Bài 2:

Ta thấy: \(\begin{cases}\left(2x+1\right)^{2008}\ge0\\\left(y-\frac{2}{5}\right)^{2008}\ge0\\\left|x+y+z\right|\ge0\end{cases}\)

\(\Rightarrow\left(2x+1\right)^{2008}+\left(y-\frac{2}{5}\right)^{2008}+\left|x+y+z\right|\ge0\)

\(\left(2x+1\right)^{2008}+\left(y-\frac{2}{5}\right)^{2008}+\left|x+y+z\right|=0\)

\(\left(2x+1\right)^{2008}+\left(y-\frac{2}{5}\right)^{2008}+\left|x+y+z\right|=0\)

\(\Rightarrow\begin{cases}\left(2x+1\right)^{2008}=0\\\left(y-\frac{2}{5}\right)^{2008}=0\\\left|x+y+z\right|=0\end{cases}\)\(\Rightarrow\begin{cases}2x+1=0\\y-\frac{2}{5}=0\\x+y+z=0\end{cases}\)

\(\Rightarrow\begin{cases}x=-\frac{1}{2}\\y=\frac{2}{5}\\x+y+z=0\end{cases}\)\(\Rightarrow\begin{cases}x=-\frac{1}{2}\\y=\frac{2}{5}\\-\frac{1}{2}+\frac{2}{5}+z=0\end{cases}\)

\(\Rightarrow\begin{cases}x=-\frac{1}{2}\\y=\frac{2}{5}\\-\frac{1}{10}=-z\end{cases}\)\(\Rightarrow\begin{cases}x=-\frac{1}{2}\\y=\frac{2}{5}\\z=\frac{1}{10}\end{cases}\)

Lightning Farron
10 tháng 11 2016 lúc 18:27

Bài 3:

a)\(2009-\left|x-2009\right|=x\)

\(\Rightarrow\left|x-2009\right|=2009-x\)

\(\Rightarrow\left|x-2009\right|=-\left(x-2009\right)\)

Vì GTTĐ của số âm bằng số đối của nó

\(\Rightarrow x-2009\le0\)

\(\Rightarrow x\le2009\)

Vậy với mọi \(x\le2009\) đều thỏa mãn

b)\(\left|3x+2\right|=\left|5x-3\right|\)

\(\Rightarrow3x+2=5x-3\) hoặc \(3x+2=3-5x\)

\(\Rightarrow2x=5\) hoặc \(8x=1\)

\(\Rightarrow x=\frac{5}{2}\) hoặc \(x=\frac{1}{8}\)

 

 

 

Viên đạn bạc
Xem chi tiết
Viên đạn bạc
6 tháng 10 2016 lúc 12:53

Trước chủ nhật 

=))

nguyen yen vi
Xem chi tiết
dream XD
Xem chi tiết