\(\left|x^2-1\right|=x^2-1\)
\(\left|x^2-1\right|\ge x^2-1\forall x\)
đẳng thức khi x^2-1>=0
\(\Rightarrow\left[{}\begin{matrix}x\ge1\\x\le-1\end{matrix}\right.\)
\(\left|x^2-1\right|=x^2-1\)
\(\left|x^2-1\right|\ge x^2-1\forall x\)
đẳng thức khi x^2-1>=0
\(\Rightarrow\left[{}\begin{matrix}x\ge1\\x\le-1\end{matrix}\right.\)
tìm x biết :
\(\frac{1}{\left(x-1\right)x}+\frac{1}{\left(x-2\right)\left(x-1\right)}+\frac{1}{\left(x-3\right)\left(x-2\right)}+\frac{1}{\left(x-4\right)\left(x-3\right)}=\frac{x}{x^2-4x}\)
Tìm x : \(\left(x-1\right)^3-2\left(x-2\right)^2=\left(2+3x\right)^3-3\left(x+1\right)^2-\left(x-1\right)\left(x-2\right)\)
Tìm x :
a ) \(\left(x-2\right)^2-\left(x-3\right)\left(x+3\right)=6.\)
b ) \(4\left(x-3\right)^2-\left(2x-1\right)\left(2x+1\right)=10\)
Tìm x
a) \(\left(2x-1\right).\left(2x+1\right)-4x^2=3\)
b) \(5x.\left(x-3\right)^2-5.\left(x-1\right)^3+15.\left(x+2\right).\left(x-2\right)=5\)
a) Tìm x,y biết: x4+x2-y2+y+10=0
b) Tính giá trị biểu thức: \(\frac{\left(1+\frac{1}{4}\right)\left(3^4+\frac{1}{4}\right)\left(5^4+\frac{1}{4}\right)...\left(29^4+\frac{1}{4}\right)}{\left(2^4+\frac{1}{4}\right)\left(4^4+\frac{1}{4}\right)\left(6^4+\frac{1}{4}\right)...\left(30^4+\frac{1}{4}\right)}\)
Tìm x
\(\left(x-3\right)^3-x.\left(3x+1\right)^2+\left(2x+1\right).\left(4x^2-2x+1-3x^2\right)\)
tìm x:
\(\left(x+1\right)^3-\left(x-1\right)^3-6\left(x-1\right)^2=-10\)
Tìm x :
a ) \(\left(x-1\right)^3+\left(2-x\right)\left(4+2x+x^2\right)+3x\left(x+2\right)=17\)
Tim x
a) \(\left(x+3\right)^3-x.\left(3x+1\right)^2+\left(2x+1\right).\left(4x^2-2x+1-3x^2\right)=54\)
b) \(\left(x-3\right)^3-\left(x-3\right).\left(x^2+3x+9\right)+6.\left(x+1\right)^2+3x^2=-33\)