giải và biện luân phương trình
\(\left(m^2-1\right)x+\left(m-1\right)y=m+1\)trong đó m là tham số
Giải và biện luận phương trình theo tham số m:
\(\left(x-1\right)m^2-\left(5x-1\right)m+2\left(3x+1\right)=0\)
\(PT\Leftrightarrow m^2x-m^2-5mx+m+6x+2=0\\ \Leftrightarrow x\left(m^2-5m+6\right)=m^2-m-2\\ \Leftrightarrow x\left(m-2\right)\left(m-3\right)=\left(m-2\right)\left(m+1\right)\)
Với \(m\ne2;m\ne3\)
\(PT\Leftrightarrow x=\dfrac{\left(m-2\right)\left(m+1\right)}{\left(m-2\right)\left(m-3\right)}=\dfrac{m+1}{m-3}\)
Với \(m=2\Leftrightarrow0x=0\left(vsn\right)\)
Với \(m=3\Leftrightarrow0x=4\left(vn\right)\)
Vậy với \(m\ne2;m\ne3\) thì PT có nghiệm duy nhất \(x=\dfrac{m+1}{m-3}\), với \(m=2\) thì PT có vô số nghiệm và với \(m=3\) thì PT vô nghiệm
giải và biện luận các phương trình sau
a, \(\frac{mx+5}{10}+\frac{x+m}{4}=\frac{m}{20}\)
b, \(\left(m+2\right)x+4\left(2m+1\right)=m^2+4\left(m-1\right)\)
trong đó x là ẩn , m,a,b là tham số
a. \(\frac{mx+5}{10}\)+ \(\frac{x+m}{4}\)=\(\frac{m}{20}\)
\(\frac{2mx+10}{20}\)+ \(\frac{5x+5m}{20}\)=\(\frac{m}{20}\)
2mx +10 + 5x +5m =m
x(2m+5)= -4m -10(1)
* 2m+5= 0 => m=-5/2
(1)<=> 0x=0 vậy phương trình 1 vô số nghiệm
* 2m+5 \(\ne\)0=> m\(\ne\)-5/2
pt (1)có nghiệm duy nhất là x= -2(2m+5): (2m+5)=-2
vậy với m=-5/2 phương trình đã cho vô số nghiệm
m\(\ne\)-5/2 phương trình đã cho có nghiệm duy nhất là x=-2
b.(m+2)x+ 4(2m+1)= \(m^2\)+4(m-1)
(m+2)x= \(m^2\)+ 4m-4-8m -4
(m+2)x=\(m^2\)-4m-8(1)
* với m+2=0 => m=-2
pt(1)<=> 0x=4
vậy phương trinh đã cho vô nghiệm
* với m+2\(\ne\)0=> m\(\ne\)-2
phương trình đã cho có nghiệm duy nhất là x=( \(m^2\)-4m-8):(m-2)
Phương trình tương đương
\(\left\{{}\begin{matrix}\left(m-1\right)x+2=\left(m+1\right)\left(x-2\right)\\x\ne2\end{matrix}\right.\)
⇔ \(\left\{{}\begin{matrix}\left(m-1\right)x+2=\left(m+1\right)x-2m-2\\x\ne2\end{matrix}\right.\)
⇔ \(\left\{{}\begin{matrix}\left(m-1-m-1\right)x=-2m-4\\x\ne2\end{matrix}\right.\)
⇔ \(\left\{{}\begin{matrix}-2x=-2m-4\\x\ne2\end{matrix}\right.\)
⇔ \(\left\{{}\begin{matrix}x=m+2\\x\ne2\end{matrix}\right.\)
Nếu m = 0 thì phương trình vô nghiệm
Nếu m ≠ 0 thì S = {m + 2}
Cho hệ phương trình \(\left\{{}\begin{matrix}x-2y=1\\mx+y=2\end{matrix}\right.\)
giải và biện luận hệ phương trình với m là tham số
• PT có nghiệm duy nhất \( \Leftrightarrow \dfrac{1}{m} \ne \dfrac{-2}{1} \Leftrightarrow m \ne \dfrac{-1}{2}\)
• PT vô nghiệm \(\Leftrightarrow \dfrac{1}{m} =\dfrac{-2}{1} \ne \dfrac{1}{2} \Leftrightarrow m=\dfrac{-1}{2}\)
• PT có vô số nghiệm \(\Leftrightarrow \dfrac{1}{m} = \dfrac{-2}{1} = \dfrac{1}{2} (\text{Vô lý})\)
Vậy....
Giải và biện luận bất phương trình:
\(m\left(2x-m\right)\le2\left(x-m\right)+1\) với m là tham số
Giải và biện luận theo tham số m hệ phương trình :
\(\left\{{}\begin{matrix}2x+\left(3m+1\right)y=m-1\\\left(m+2\right)x+\left(4m+3\right)y=m\end{matrix}\right.\)
\(\left\{{}\begin{matrix}2x+\left(3m+1\right)y=m-1\\\left(m+2\right)x+\left(4m+3\right)y=m\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}2\left(m+2\right)x+\left(m+2\right)\left(3m+1\right)y=\left(m-1\right)\left(m+2\right)\\2\left(m+2\right)x+2\left(4m+3\right)y=2m\end{matrix}\right.\)
\(\Rightarrow\left(m+2\right)\left(3m+1\right)y-2.\left(4m+3\right)y\)\(=\left(m-1\right)\left(m+2\right)-2m\)
\(\Leftrightarrow\left(3m^2-m-4\right)y=m^2-m-2\)
\(\Leftrightarrow\left(m+1\right)\left(3m-4\right)y=\left(m+1\right)\left(m-2\right)\) (*)
Th1: \(\left(m+1\right)\left(3m-4\right)=0\Leftrightarrow\left[{}\begin{matrix}m=-1\\m=\dfrac{4}{3}\end{matrix}\right.\)
Với \(m=-1\) thay vào hệ phương trình ta được:
\(\left\{{}\begin{matrix}2x-2y=-2\\x-y=-1\end{matrix}\right.\)\(\Leftrightarrow x=y-1\).
Khi đó hệ phương trình có vô số nghiệm dạng: \(\left\{{}\begin{matrix}x=y-1\\y\in R\end{matrix}\right.\).
Với \(m=\dfrac{4}{3}\) thay vào (*) ta được: \(0y=-\dfrac{2}{3}\) (Vô nghiệm)
Khi đó hệ phương trình vô nghiệm.
Th2: \(\left(m+1\right)\left(3m-4\right)\ne0\Leftrightarrow\left\{{}\begin{matrix}m\ne-1\\m\ne\dfrac{4}{3}\end{matrix}\right.\).
Khi đó (*) có nghiệm: \(y=\dfrac{m-2}{3m-4}\).
Thay vào ta được: \(2x+\left(3m+1\right).\dfrac{m-2}{3m-4}=m-1\)
\(\Leftrightarrow x=\dfrac{3-m}{3m-4}\).
Thử lại: \(\left(x;y\right)=\left(\dfrac{3-m}{3m-4};\dfrac{m-2}{3m-4}\right)\) thỏa mãn hệ phương trình.
Biện luận:
Với \(m=-1\) hệ phương trình có vô số nghiệm loại: \(\left\{{}\begin{matrix}x=y-1\\y\in R\end{matrix}\right.\).
Với \(m=\dfrac{4}{3}\) hệ phương trình vô nghiệm.
Với \(\left\{{}\begin{matrix}m\ne-1\\m\ne\dfrac{4}{3}\end{matrix}\right.\) hệ có nghiệm duy nhất là: \(\left(x;y\right)=\left(\dfrac{3-m}{3m-4};\dfrac{m-2}{3m-4}\right)\).
Cho hệ phương trình \(|^{mx+2y=1}_{3x+\left(m+1\right)y=-1}\) (với m là tham số)
a) Giải hệ phương trình với m = 3.
b) Giải và biện luận hệ phương trình theo m.
c) Tìm m để hệ phương trình có nghiệm là số nguyên.
Cho hệ phương trình \(\left\{{}\begin{matrix}\left(m-1\right)x+y=2\\x+2y=2\end{matrix}\right.\) ( m là tham số và x,y là các ẩn số)
Tìm tất cả các giá trị nguyên của m để hệ phương trình có nghiệm (x,y) trong đó x,y là các số nguyên
Giải
Từ phương trình thứ hai ta có: x= 2 - 2y thế vào phương trình thứ nhất được:
(m-1)(2-2y) + y =2
<=> ( 2m - 3)y= 2m-4 (3)
Hệ có nghiệm x,y là các số nguyên <=> (3) có nghiệm y nguyên.
Với m thuộc Φ => 2m-3 khác 0 => (3) có nghiệm y=\(\dfrac{2m-4}{2m-3}\)
y thuộc Φ <=> \(\left[{}\begin{matrix}2m-3=1\\2m-3=-1\end{matrix}\right.< =>\left[{}\begin{matrix}m=2\\m=1\end{matrix}\right.\)
Vậy có hai giá trị m thỏa mãn:1,2.
1, Giải và biện luận theo số nguyên m phương trình vô định sau đây
3x+(2m-1)y=m+1.
2,Giải và biện luận theo số nguyên m hệ
phương trình vô định sau đây
\(\left\{{}\begin{matrix}3x+2y=1\\3x+6y+\left(m+1\right)z=m-2\end{matrix}\right.\)