Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Đinh Tuấn Việt
Xem chi tiết
Hoàng Nguyên Ngọc Bình
22 tháng 11 2016 lúc 20:08

câu này ko có nghĩa đâu nha bạn. nhưng mình thử rùi. pi-2 nha

Đàm Vũ Đức Anh
9 tháng 3 2017 lúc 11:10

aΔb=|a−b|=> 2Δπ=|2−π|=|−1,141592654|=|1,141592654|

vậy 2Δπ=1,141592654

Linh Miu Ly Ly
9 tháng 3 2017 lúc 11:17

\(\pi-2\)

Nguyen Thi Thanh Huong
Xem chi tiết
Trần Hoàng Sơn
4 tháng 9 2015 lúc 15:47

C nhé, dựa vào phương trình sóng tổng quát: x = A cos(wt - 2pi.d/lamda)

Cold Wind
Xem chi tiết
Neet
12 tháng 7 2017 lúc 18:56

M=\(\left(x_1+x_2\right)^2-2x_1.x_2+\left(y_1+y_2\right)^2-2y_1.y_2\)

Áp dụng định lý viettel :( :v )

\(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{b}{a}\\x_1x_2=\dfrac{c}{a}\end{matrix}\right.\);\(\left\{{}\begin{matrix}y_1+y_2=-\dfrac{b}{c}\\y_1y_2=\dfrac{a}{c}\end{matrix}\right.\)

\(M=\dfrac{b^2}{a^2}-\dfrac{2c}{a}+\dfrac{b^2}{c^2}-\dfrac{2a}{c}=\dfrac{b^2-4ac}{a^2}+\dfrac{b^2-4ac}{c^2}+2\left(\dfrac{a}{c}+\dfrac{c}{a}\right)\)

\(\ge2\left(\dfrac{a}{c}+\dfrac{c}{a}\right)\ge4\)

Dấu = xảy ra: \(\left\{{}\begin{matrix}a=c\\b^2=4ac\end{matrix}\right.\)\(\Leftrightarrow b^2=4a^2=4c^2\)

Mysterious Person
12 tháng 7 2017 lúc 17:48

@_@ oho đưa thẳng câu hỏi luôn đi ; nói như zầy chưa nghỉ ra câu trả lời ; chống mặt chết trước rồi

Phan uyển nhi
Xem chi tiết
Thu Hà
Xem chi tiết
Linh Miu Ly Ly
15 tháng 2 2017 lúc 16:08

\(\pi-2\)

Quoc Tran Anh Le
Xem chi tiết
Kiều Sơn Tùng
14 tháng 9 2023 lúc 23:11

a) Vì \(AH\) là đường cao nên \(\widehat {AHB} = \widehat {AHC} = 90^\circ \)

Xét tam giác \(ABH\) và tam giác \(CBA\) có:

\(\widehat B\) (chung)

\(\widehat {AHB} = \widehat {CAB} = 90^\circ \) (chứng minh trên)

Suy ra, \(\Delta ABH\backsim\Delta CBA\) (g.g).

Do đó, \(\frac{{AB}}{{CB}} = \frac{{BH}}{{AB}}\) (các cặp cạnh tương ứng có cùng tỉ lệ)

Suy ra, \(A{B^2} = BH.BC\) .

b)

-  Vì \(HE\) vuông góc với \(AB\) nên \(\widehat {HEA} = \widehat {HEB} = 90^\circ \)

Xét tam giác \(AHE\) và tam giác \(ABH\) có:

\(\widehat {HAE}\) (chung)

\(\widehat {HEA} = \widehat {AHB} = 90^\circ \) (chứng minh trên)

Suy ra, \(\Delta AHE\backsim\Delta ABH\) (g.g).

Do đó, \(\frac{{AH}}{{AB}} = \frac{{AE}}{{AH}}\) (các cặp cạnh tương ứng có cùng tỉ lệ)

Suy ra, \(A{H^2} = AB.AE\) . (1)

- Vì \(HF\) vuông góc với \(AC\) nên \(\widehat {HFC} = \widehat {HFA} = 90^\circ \)

Xét tam giác \(AHF\) và tam giác \(ACH\) có:

\(\widehat {HAF}\) (chung)

\(\widehat {AFH} = \widehat {AHC} = 90^\circ \) (chứng minh trên)

Suy ra, \(\Delta AHF\backsim\Delta ACH\) (g.g).

Do đó, \(\frac{{AH}}{{AC}} = \frac{{AF}}{{AH}}\) (các cặp cạnh tương ứng có cùng tỉ lệ)

Suy ra, \(A{H^2} = AF.AC\) . (2)

Từ (1) và (2) suy ra, \(AE.AB = AF.AC\) (điều phải chứng minh)

c) Vì \(AE.AB = AF.AC \Rightarrow \frac{{AE}}{{AC}} = \frac{{AF}}{{AB}}\).

Xét tam giác \(AFE\) và tam giác \(ABC\) có:

\(\widehat A\) (chung)

\(\frac{{AE}}{{AC}} = \frac{{AF}}{{AB}}\) (chứng minh trên)

Suy ra, \(\Delta AFE\backsim\Delta ABC\) (c.g.c).

d) Vì \(HF\) vuông góc với \(AC\) nên \(CF \bot HI\), do đó, \(\widehat {CFH} = \widehat {CFI} = 90^\circ \).

Vì \(IN \bot CH \Rightarrow \widehat {CBI} = \widehat {HNI} = 90^\circ \).

Xét tam giác \(HFC\) và tam giác \(HNI\) có:

\(\widehat {CHI}\) (chung)

\(\widehat {HFC} = \widehat {HNI} = 90^\circ \) (chứng minh trên)

Suy ra, \(\Delta HFC\backsim\Delta HNI\) (g.g).

Suy ra, \(\frac{{HF}}{{HN}} = \frac{{HC}}{{HI}}\) (hai cặp cạnh tương ứng cùng tỉ lệ)

Do đó, \(\frac{{HF}}{{HC}} = \frac{{HN}}{{HI}}\).

Xét tam giác \(HNF\) và tam giác \(HIC\) có:

\(\widehat {CHI}\) (chung)

\(\frac{{HF}}{{HC}} = \frac{{HN}}{{HI}}\) (chứng minh trên)

Suy ra, \(\Delta HNF\backsim\Delta HIC\) (c.g.c).

Vân Trần Thị
Xem chi tiết
Akai Haruma
29 tháng 3 2019 lúc 18:56

Lời giải:

Ta có:

\(A=(x-2y)^2+(x-3)^2+(y-1)^2+3\)

\(=x^2+4y^2-4xy+x^2-6x+9+y^2-2y+1+3\)

\(=2x^2+5y^2-4xy-6x-2y+13\)

\(=2(x^2-2xy+y^2)-6x-2y+3y^2+13\)

\(=2(x-y)^2-2.3(x-y)-8y+3y^2+13\)

\(=2[(x-y)^2-3(x-y)+\frac{3^2}{2^2}]+3(y^2-\frac{8}{3}y+\frac{4^2}{3^2})+\frac{19}{6}\)

\(=2(x-y-\frac{3}{2})^2+3(y-\frac{4}{3})^2+\frac{19}{6}\)

\(\geq 0+0+\frac{19}{6}=\frac{19}{6}\)

Vậy GTNN của $A$ là \(\frac{19}{6}\)

Dấu "=" xảy ra khi \(\left\{\begin{matrix} x-y-\frac{3}{2}=0\\ y-\frac{4}{3}=0\end{matrix}\right.\Leftrightarrow x=\frac{17}{6}; y=\frac{4}{3}\)

Tuyết Phạm
Xem chi tiết
Trần Hoàng Minh
Xem chi tiết