tìm m để phường trình 5cos(5x+1) =2m²-m-5
cho phường trình x2 + (2m + 1)x + m(m - 1)=0 (ẩn x, tham số m)
a/ tìm m để phương trình có nghiệm kép. tính nghiệm kép đó
b/ giải phương trình với m=1
\(a,\)Để pt \(x^2+\left(2m+1\right)x+m\left(m-1\right)=0\) có nghiệm kép thì \(\Delta=0\)
\(\Leftrightarrow\left(2m+1\right)^2-4\left(m^2-m\right)=0\)
\(\Leftrightarrow4m^2+4m+1-4m^2+4m=0\)
\(\Leftrightarrow8m+1=0\)
\(\Leftrightarrow m=-\dfrac{1}{8}\)
Thay \(m=-\dfrac{1}{8}\) vào pt
\(\Rightarrow x^2+\left[2.\left(-\dfrac{1}{8}\right)+1\right]x-\dfrac{1}{8}\left(-\dfrac{1}{8}-1\right)=0\)
\(\Rightarrow x^2+\dfrac{3}{4}x+\dfrac{9}{64}=0\)
\(\Rightarrow x=-\dfrac{3}{8}\)
\(b,\) Thay \(m=1\) vào pt :
\(\Rightarrow x^2+\left(2.1+1\right)x+1\left(1-1\right)=0\)
\(\Rightarrow x^2+3x=0\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x=-3\end{matrix}\right.\)
tìm giá trị nhỏ nhất của m để phường trình: (m+5x)/(2x-1)=m+4 vô nghiệm
Cho phường trình ẩn x: x2 - (2m-1)x + m2 - 1 = 0
a/ Tìm điều kiện của m để phường trình có hai nghiệm x1, x2
b/ Định m để phường trình có hai nghiệm x1, x2 : (x1 - x2) 2 = x1 - 3x2
a) \(\Delta=\left(2m-1\right)^2-4.\left(m^2-1\right)=-4m+5\)
Phương trình có 2 nghiêm \(x_1,x_2\) khi \(\Delta\ge0\Leftrightarrow-4m+5\ge\Leftrightarrow m\le\frac{5}{4}\)
b) Theo hệ thức vi-ét ta có
\(x_1+x_2=2m-1;x_1.x_2=m^2-1\)
còn phần sau nữa bn tự làm ddi nhé
cho phường trình:\(^{x^2-2mx+2m-4=0}\) (m là tham số). Tìm m để phương trình có 2 nghiệm phân biệt \(_{x_1,x_2}\) thỏa mãn \(x_1+2x_2=8\)
Lời giải:
Để pt có 2 nghiệm phân biệt thì:
$\Delta'=m^2-(2m-4)=m^2-2m+4>0$
$\Leftrightarrow (m-1)^2+3>0$
$\Leftrightarrow m\in\mathbb{R}$
Áp dụng định lý Viet:
$x_1+x_2=2m$
$x_1x_2=2m-4$
Khi đó:
$x_1+2x_2=8$
$\Leftrightarrow 2m+x_2=8$
$\Leftrightarrow x_2=8-2m$
$\Leftrightarrow x_1=2m-x_2=2m-(8-2m)=4m-8$
$2m-4=x_1x_2=(4m-8)(8-2m)$
$\Leftrightarrow m-2=(2m-4)(8-2m)=2(m-2)(8-2m)$
$\Leftrightarrow (m-2)[2(8-2m)-1]=0$
$\Leftrightarrow (m-2)(15-4m)=0$
$\Leftrightarrow m=2$ hoặc $m=\frac{15}{4}$
Cho phường trình: \(x^2-2\left(2m+1\right)x+4m^2+4m=0\)
Gọi x1; x2 là 2 nghiệm của phương trình. Tìm m để: \(\left|x_1-x_2\right|=x_1+x_2\)
\(a=1;b=-2\left(2m+1\right);c=4m^2+4m;b'=\dfrac{b}{2}=-\left(2m+1\right)\)
\(\Delta'=b'^2-ac=\left[-\left(2m+1\right)\right]^2-1.\left(4m^2+4m\right)\\ =4m^2+4m+1-4m^2-4m\\ =1>0\)
\(\Leftrightarrow\Delta'>0\) mà \(a=1\ne0\left(luônđúng\right)\)
=> pt luôn có 2 no pb x1;x2
ad đl viet có:
\(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{b}{a}=2\left(2m+1\right)=4m+2\\x_1x_2=\dfrac{c}{a}=4m^2+4m\end{matrix}\right.\)
ta có: \(\left|x_1-x_2\right|=x_1+x_2\\ \Leftrightarrow\left(x_1+x_2\right)^2-4x_1x_2=\left(x_1+x_2\right)^2\\ \Leftrightarrow\left(4m+2\right)^2-4\left(4m^2+4m\right)=\left(4m+2\right)^2\\ \Leftrightarrow-4\left(4m^2+4m\right)=0\\ \Leftrightarrow4m\left(m+1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}m=0\left(tm\right)\\m=-1\left(loại\right)\end{matrix}\right.\)
Thảo luận 1
đầu tiên cho denta > 0 để có 2 nghiệm đã ta thấy denta'=m^2+(m-1)^2 luôn luôn duơng nên có 2 no theo Viet ta có S= x1+x2=-b/a=2(m+1) P=x1.x2=c/a=4m-m^2 Theo GT A=/x1-x2/ min tuơng đuơng A^2=(x1-x2)^2 min=(x1+x2)^2-4x1.x2 ráp tổng tích vào, làm gọn ta có A^2= 2(m-1)^2+4m^2 mà 4m^2>=0, mim khi m=0, A^2=2 2(m-1)^2>=0, min khi m=1, A^2=4 Chọn A^2min=2, suy ra Amin= căn 2
Thảo luận 2
A=/x1-x2/ => A^2 = /x1-x2/^2 = (x1-x2)^2 => Amin khi (x1-x2)^2 min = (x1+x2)^2 - 4x1x2 min Ta co: x1 + x2 = 2(m+1) ; x1x2 = 4m-m^2. Thay vao: 4(2m^2 -2m+1) = 8 (m-1/2)^2 + 2 >= 2. A^2 >= 2 A = 0) hay A >= can2. Vậy Amin = can 2
Bài 1: Tìm (P): y = ax2 + bx + c biết (P) có đỉnh I(2;1) và đi qua điểm A(4,5). Lập bảng biến thiên và vẽ (P).
Bài 2: Tìm tham số m để phương trình: (m2 - 1)x + 2m = 5x - 2√6 nghiệm đúng ∀x ∈ R
Bài 3: Cho phương trình: (2m - 1)x2 - 2(2m - 3)x + 2m + 5 = 0 (1)
Tìm m để phương trình:
a) Có nghiệm.
b) Có hai nghiệm phân biệt x1, x2 sao cho x1 = -x2.
Bài 4: Giải các phương trình sau:
Bài 5: Giải hệ phương trình sau:
Bài 6: Cho ΔABC có A(-1;1); B(1;3); C(1;-1)
a. ΔABC là tam giác gì? Tính chu vi và diện tích.
b. Tìm tọa độ tâm I và tính bán kính đường tròn ngoại tiếp tam giác ABC
c. Tìm tọa độ điểm D có hoành độ âm sao cho ΔADC vuông cân tại D.
tạo câu hỏi nhầm khối lớp rồi bạn=))
giai giup minh vs
Tìm giá trị của M để phương trình 2x2 -5x + 2m - 1= 0 có hai nghiệm phân biệt x1, x2 thoả mãn 1/ x1 + 1/x2 = 5/2
2x2-5x + 2m - 1 = 0 ( 1)
Dental = (-5)2 - 4*2*( 2m - 1)
= 25 - 16m + 8
= 33 - 16m
Phương trình (1) có 2 nghiệm phân biệt khi :
33 - 16m > 0
- 16m >-33
m < 33/16
Theo hệ thức vi-ét ta có:
x1 + x2 = -b/a = 5/2
x1x2 = c/a =2m - 1/2
Theo bài ch0 :1/x1 + 1/x2 = 5/2
<=>2( x2 + x1 ) = 5x1x2
<+> 2( 5/2 ) + 55 ( 2m - 1 ?2
<+> 5 = 10m -5?2
<+>
<=>2( x2 + x1 ) = 5x1x2
<=> 2( 5/2 ) = 5 ( 2m - 1 /2 )
<=> 5 - 10m + 5/2 = 0
<=> 10 - 20m + 5 = 0
<=> 15 - 20m = 0
<=> -20m = -15
<=> m = 5/4
Vậy m = 5/4 thỏa mãn yêu cầu bài toán
( mình học khá nên chắc không đúng 100 %, có sai xót thì mng sửa hộ ạ ^^ )
Tìm m để hai bất phương trình sau có cùng tập nghiệm:
\(x^2\left(x-5\right)>4-5x\) và \(mx-5>x-2m\)
cho phương trình :
\(x^2+5x-2m+1=0\)
Tìm m để phương trình có 2 nghiệm phân biệt thỏa mãn \(x_1-2x_2=4\)
\(\text{Δ}=5^2-4\cdot2\cdot\left(-2m+1\right)=8m+21\)
Để phương trình có hai nghiệm phân biệt thì 8m+21>0
hay m>-21/8
Theo đề, ta có hệ phương trình:
\(\left\{{}\begin{matrix}x_1-2x_2=4\\x_1+x_2=-5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_2=-3\\x_1=-2\end{matrix}\right.\)
Theo đề, ta có: \(x_1x_2=-2m+1\)
=>-2m+1=6
=>-2m=5
hay m=-5/2(loại)