mn ơi giải giúp vs ạ
MN ơi giải giúp e vs ạ
MN ơi giải giúp e vs ạ
1 A
2 B
3 A
4 C
D
1 C
2 D
3 A
4 D
5 B
7 D
8 B
9 C
10 C
E
1 C
2 C
3 A
4 B
5 D
Mn ơi giải câu này giúp mình vs ;-;;; Cảm ơn mn ạ
Mn ơi giải nhanh giúp e vs ạ
Bài 1:
\(n_{CuO}=\dfrac{56}{80}=0,7\left(mol\right)\)
PTHH: CuO + 2HCl → CuCl2 + H2O
Mol: 0,7 1,4
\(m_{ddHCl}=\dfrac{1,4.36,5.100}{14,6}=350\left(g\right)\)
Bài 2:
\(n_{Na_2SO_3}=\dfrac{12,6}{126}=0,1\left(mol\right)\)
PTHH: Na2SO3 + 2HCl → 2NaCl + SO2 + H2O
Mol: 0,1 0,1
\(V_{SO_2}=0,1.22,4=2,24\left(l\right)\)
MN ơi giúp mik vs mai mik thi í bạn nào biết giải giúp mik vs ạ :((
Mn ơi giải giúp mìk đề này vs ạ 🤗
Em cần mọi người hỗ trợ những câu nào hay toàn đề em nhỉ? Hay em đăng lên cho các bạn tham khảo đề nè!
mn ơi giải giúp em vs ạ e đang cần gấp
1) \(\sqrt{2x-5}=7\)
\(\left(\sqrt{2x-5}\right)^2=7^2\)
\(2x-5=49\)
\(2x=54\)
\(x=27\)
2) \(3+\sqrt{x-2}=4\)
\(\sqrt{x-2}=1\)
\(\left(\sqrt{x-2}\right)^2=1^2\)
\(x-2=1\)
\(x=3\)
1) \(\sqrt{2x-5}=7\left(đk:x\ge\dfrac{5}{2}\right)\)
\(\Leftrightarrow2x-5=49\Leftrightarrow2x=54\Leftrightarrow x=27\left(tm\right)\)
2) \(3+\sqrt{x-2}=4\left(đk:x\ge2\right)\)
\(\Leftrightarrow\sqrt{x-2}=1\Leftrightarrow x-2=1\Leftrightarrow x=3\)
3) \(\Leftrightarrow\sqrt{\left(x-1\right)^2}=1\Leftrightarrow\left|x-1\right|=1\)
\(\Leftrightarrow\left[{}\begin{matrix}x-1=1\\x-1=-1\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=0\end{matrix}\right.\)
4) \(\Leftrightarrow\sqrt{\left(x-2\right)^2}=1\Leftrightarrow\left|x-2\right|=1\)
\(\Leftrightarrow\left[{}\begin{matrix}x-2=1\\x-2=-1\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=3\\x=1\end{matrix}\right.\)
5) \(\Leftrightarrow\sqrt{\left(2x-1\right)^2}=\sqrt{\left(x+4\right)^2}\)
\(\Leftrightarrow\left|2x-1\right|=\left|x+4\right|\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-1=x+4\\2x-1=-x-4\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=5\\x=-1\end{matrix}\right.\)
6) \(ĐK:x\ge-2\)
\(\Leftrightarrow5\sqrt{x+2}-3\sqrt{x+2}-\sqrt{x+2}=\sqrt{x+7}\)
\(\Leftrightarrow\sqrt{x+2}=\sqrt{x+7}\)
\(\Leftrightarrow x+2=x+7\Leftrightarrow2=7\left(VLý\right)\)
Vậy \(S=\varnothing\)
7) \(ĐK:x\ge-1\)
\(\Leftrightarrow5\sqrt{2x+1}+3\sqrt{x+1}=4\sqrt{x+1}+4\sqrt{2x+1}\)
\(\Leftrightarrow\sqrt{2x+1}=\sqrt{x+1}\)
\(\Leftrightarrow2x+1=x+1\Leftrightarrow x=0\left(tm\right)\)
\(3,\sqrt{x^2-2x+1}=1\left(x\in R\right)\\ \Leftrightarrow\sqrt{\left(x-1\right)^2}=1\\ \Leftrightarrow\left|x-1\right|=1\Leftrightarrow\left[{}\begin{matrix}x-1=1\left(x\ge1\right)\\x-1=-1\left(x< 1\right)\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\left(tm\right)\\x=0\left(tm\right)\end{matrix}\right.\)
\(4,ĐK:x\in R\\ PT\Leftrightarrow\sqrt{\left(x-2\right)^2}=1\\ \Leftrightarrow\left|x-2\right|=1\Leftrightarrow\left[{}\begin{matrix}x-2=1\left(x\ge2\right)\\x-2=-1\left(x< 2\right)\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\left(tm\right)\\x=1\left(tm\right)\end{matrix}\right.\)
\(5,ĐK:x\in R\\ PT\Leftrightarrow\left|2x-1\right|=\left|x+4\right|\\ \Leftrightarrow\left[{}\begin{matrix}2x-1=x+4\\1-2x=x+4\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=5\\x=-1\end{matrix}\right.\)
\(6,ĐK:x\ge-2\\ PT\Leftrightarrow5\sqrt{x+2}-3\sqrt{x+2}-\sqrt{x+2}=\sqrt{x+7}\\ \Leftrightarrow\sqrt{x+2}=\sqrt{x+7}\Leftrightarrow x+2=x+7\Leftrightarrow0x=5\Leftrightarrow x\in\varnothing\)
\(7,ĐK:x\ge-1\\ PT\Leftrightarrow5\sqrt{x+2}+3\sqrt{x+1}=4\sqrt{x+1}+4\sqrt{x+2}\\ \Leftrightarrow\sqrt{x+2}=\sqrt{x+1}\\ \Leftrightarrow x+2=x+1\\ \Leftrightarrow0x=-1\Leftrightarrow x\in\varnothing\)
Mn ơi giúp mik giải bài này vs mik cần gấp ạ >
Mn ơi giải giúp em câu 4 vs ạ Em cảm ơn
a, xét \(\Delta ABC\left(\widehat{BAC}=90^o\right)\) có \(AM\) là đường cao
\(BC^2=AB^2+AC^2\left(pytago\right)\Leftrightarrow BC=\sqrt{12^2+16^2}=20\left(cm\right)\)
\(sinABC=\dfrac{AC}{BC}=\dfrac{16}{20}\Rightarrow\widehat{ABC}\approx53^o8'\)
\(sinACB=\dfrac{AB}{BC}=\dfrac{12}{20}\Rightarrow\widehat{ACB}\approx32^o52'\)
\(AB^2=BM.BC\Rightarrow BM=\dfrac{AB^2}{BC}=\dfrac{12^2}{20}=7,2\left(cm\right)\)
b, Xét \(\Delta ABM\left(\widehat{AMB}=90^o\right)\) có \(AE\perp AB\)
\(AB^2=BM^2+AM^2\left(pytago\right)\Leftrightarrow AM=\sqrt{20^2-7,2^2}=\dfrac{16\sqrt{34}}{5}\left(cm\right)\)
\(AM^2=AE.AB\) (hệ thức lượng trong tam giác vuông)\(\left(1\right)\)
c, Xét \(\Delta AMC\left(\widehat{AMC}=90^o\right)\)
\(AC^2=AM^2+MC^2\left(pytago\right)\Leftrightarrow AM^2=AC^2-MC^2\left(2\right)\)
\(\left(1\right)\left(2\right)\Rightarrow AE.AB=AC^2-MC^2\left(đpcm\right)\)