5.msinx=sĩn2+sin3x
tìm m để pt có nghiệm
a. x khác kpi
b.x khác 2kpi
c.x thuộc (pi/2;pi)
2. cho pt sĩn2-m(sinx+cosx)+3m-7=0.tìm m để pt có nghiệm thuộc (-pi/4;0)
4.cho pt msinx=2sin2x+3sin3x tìm m để pt có nghiệm x khác kpi
<1> ↔ msinx = 4sinxcosx + 9sinx – 12sin^3x
TH 1 : sinx = 0 ↔ x= k π (loại)
TH 2: Sinx ≠ 0 Khi đó
<1> ↔ 4cosx + 9 – 12sin^2x = m
↔ 12cos^2x + 4cosx – 3 = m
Đặt cosx = t . vì x ≠ k π nên t ≠ 1 và t ≠ -1
PT trở thành 12t^2 + 4t – 3 = m <*>
Bài toán quy về tìm m để PT <*> có nghiệm t ≠ 1 và t ≠ -1
Xét hàm số y = 12t^2 + 4t – 3 trên miền R\ {1; -1}
Vẽ bảng biến thiên
Từ bảng biến thiên ta có m≥ -10/3
Tìm m để pt sau: sin3x = msinx + (4 - 2m)sin2x có đúng 5 nghiệm phân biệt trên [0;2pi]
Đặt \(t=tan\dfrac{x}{2}\Rightarrow\left\{{}\begin{matrix}t\in\left[0;1\right]\\sinx=\dfrac{2t}{1+t^2}\\cosx=\dfrac{1-t^2}{1+t^2}\end{matrix}\right.\)
Pt trở thành: \(\dfrac{m.2t}{1+t^2}+\dfrac{1-t^2}{1+t^2}=1\)
\(\Leftrightarrow2mt+1-t^2=1+t^2\)
\(\Leftrightarrow2mt-2t^2=0\)
\(\Leftrightarrow\left[{}\begin{matrix}t=0\\t=m\end{matrix}\right.\)
\(\Rightarrow\) Để pt có 2 nghiệm thuộc đoạn đã cho thì \(0< m\le1\)
1, Tìm GTLN M của hàm số y=a+b\(\sqrt{sinx}\) +c\(\sqrt{cosx}\); x\(\in\)(0;pi/4).a^2+b^2+c^2=4 2, giải pt sin3x-4sinx.cos2x=0
3,tập nghiệm của phương trình sin^2x cosx=0
4, giải pt \(\sqrt{3}\)sin2x+2sin^2x=3
5,pt 2sin^2x-5sinx.cosx-cos^2x=-2 tương đương với pt nào
6,nghiệm của pt sĩn+cosx-2sinx.cosx+1=0
7, tất cả các nghiệm của pt sin3x-cosx=0
8, số nghiệm của pt sin2x-cos2x=3sinx+cosx-2 trong khoảng(0;pi/2)
9, tìm m để pt 2sin^2x+msin2x=2m vô nghiệm
10, tổng các nghiệm của pt sin(x+pi/4)+sin(x-pi/4)=0 thuộc khoảng (0;4pi)
1.
Đề là \(x\in\left(0;\frac{\pi}{4}\right)\) hay \(x\in\left[0;\frac{\pi}{4}\right]\) ?
2.
\(sin3x-4sinx.cos2x=0\)
\(\Leftrightarrow sin3x-\left(2sin3x-2sinx\right)=0\)
\(\Leftrightarrow2sinx-sin3x=0\)
\(\Leftrightarrow2sinx-3sinx+4sin^3x=0\)
\(\Leftrightarrow sinx\left(4sin^2x-1\right)=0\)
\(\Leftrightarrow sinx\left(1-2cos2x\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}sinx=0\\cos2x=\frac{1}{2}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=k\pi\\x=\pm\frac{\pi}{6}+k\pi\end{matrix}\right.\)
3.
\(sin^2x.cosx=0\)
\(\Leftrightarrow sin2x=0\)
\(\Leftrightarrow x=\frac{k\pi}{2}\)
4.
\(\sqrt{3}sin2x+1-cos2x=3\)
\(\Leftrightarrow\frac{\sqrt{3}}{2}sin2x-\frac{1}{2}cos2x=1\)
\(\Leftrightarrow sin\left(2x-\frac{\pi}{6}\right)=1\)
\(\Leftrightarrow2x-\frac{\pi}{6}=\frac{\pi}{2}+k2\pi\)
\(\Leftrightarrow x=\frac{\pi}{3}+k\pi\)
5.
Ko có 4 đáp án thì làm sao biết, có vô số pt tương đương với pt này :)
6.
\(sinx+cosx-2sinx.cosx+1=0\)
Đặt \(sinx+cosx=t\Rightarrow\left\{{}\begin{matrix}\left|t\right|\le\sqrt{2}\\2sinx.cosx=t^2-1\end{matrix}\right.\)
Pt trở thành:
\(t+1-t^2+1=0\)
\(\Leftrightarrow-t^2+t+2=0\)
\(\Leftrightarrow\left[{}\begin{matrix}t=-1\\t=2\left(l\right)\end{matrix}\right.\)
\(\Rightarrow2sinx.cosx=t^2-1=0\)
\(\Leftrightarrow sin2x=0\)
\(\Leftrightarrow x=\frac{k\pi}{2}\)
cho pt \(msinx+2cosx=1-m\). Tìm m để pt có nghiệm \(\left[-\frac{\pi}{2};\frac{\pi}{2}\right]\)
\(x\in\left[-\frac{\pi}{2};\frac{\pi}{2}\right]\Rightarrow\frac{x}{2}\in\left[-\frac{\pi}{4};\frac{\pi}{4}\right]\Rightarrow cos\frac{x}{2}\ne0\)
Đặt \(t=tan\frac{x}{2}\) \(\Rightarrow t\in\left[-1;1\right]\)
Ta có: \(\left\{{}\begin{matrix}sinx=2sin\frac{x}{2}cos\frac{x}{2}=\frac{2sin\frac{x}{2}}{cos\frac{x}{2}}.cos^2\frac{x}{2}=\frac{2t}{1+t^2}\\cosx=cos^2\frac{x}{2}-sin^2\frac{x}{2}=cos^2\frac{x}{2}\left(1-tan^2\frac{x}{2}\right)=\frac{1-t^2}{1+t^2}\end{matrix}\right.\)
Pt trở thành: \(\frac{2mt}{1+t^2}+\frac{2\left(1-t^2\right)}{1+t^2}=1-m\)
\(\Leftrightarrow m\left(t+1\right)^2=3t^2-1\)
\(\Rightarrow m=\frac{3t^2-1}{\left(t+1\right)^2}=\frac{6t^2-2}{2\left(t+1\right)^2}=\frac{-3\left(t^2+2t+1\right)+\left(9t^2+6t+1\right)}{2\left(t+1\right)^2}=-\frac{3}{2}+\frac{\left(3t+1\right)^2}{2\left(t+1\right)^2}\ge-\frac{3}{2}\)
\(\Rightarrow m\ge-\frac{3}{2}\)
tìm m để pt 2sin(x)+mcos(x)=1-m có nghiệm x thuộc[-pi/2;pi/2]
Cho pt (m-1)x2-2mx+m+1=0
a, CMR pt luôn có 2 nghiệm phân biệt khi m khác 1
b, Xác định m để pt có tích 2 nghiệm bằng 5. Từ đó hãy tính tổng các nghiệm của pt
c, Tìm một hệ thức liên hệ giữa các nghiệm của pt không phụ thuộc vào m
d, Tìm m để pt có 2 nghiệm thỏa mãn x1/x2 + x2/x1 + 5/2 = 0
Với \(m\ne1\):
a. \(\Delta'=m^2-\left(m-1\right)\left(m+1\right)=1>0\Rightarrow\) pt luôn có 2 nghiệm pb khi \(m\ne1\)
b. Theo hệ thức Viet: \(x_1x_2=\dfrac{m+1}{m-1}\)
\(\Rightarrow\dfrac{m+1}{m-1}=5\Rightarrow m=\dfrac{3}{2}\)
Khi đó: \(x_1+x_2=\dfrac{2m}{m-1}=\dfrac{2.\dfrac{3}{2}}{\dfrac{3}{2}-1}=6\)
c. \(\left\{{}\begin{matrix}x_1+x_2=\dfrac{2m}{m-1}\\x_1x_2=\dfrac{m+1}{m-1}\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x_1+x_2=2+\dfrac{2}{m-1}\\x_1x_2=1+\dfrac{2}{m-1}\end{matrix}\right.\)
\(\Rightarrow x_1+x_2-x_1x_2=1\)
Đây là hệ thức liên hệ 2 nghiệm ko phụ thuộc m
d. \(\dfrac{x_1}{x_2}+\dfrac{x_2}{x_1}+\dfrac{5}{2}=0\Leftrightarrow\dfrac{x_1^2+x_2^2}{x_1x_2}+\dfrac{5}{2}=0\)
\(\Leftrightarrow\left(x_1+x_2\right)^2+\dfrac{1}{2}x_1x_2=0\)
\(\Leftrightarrow\dfrac{4m^2}{\left(m-1\right)^2}+\dfrac{m+1}{2\left(m-1\right)}=0\)
\(\Leftrightarrow8m^2+\left(m^2-1\right)=0\)
\(\Leftrightarrow m^2=\dfrac{1}{9}\Rightarrow m=\pm\dfrac{1}{3}\)
Phương trình 1+2cosx=2 có tập nghiệm là: a.x=pi/3+k2pi b.x=pi+k2pi C.x=-pi/3+k2pi d.x=+- pi/3+k2pi
\(1+2cosx=2\Leftrightarrow cosx=\dfrac{1}{2}\)
\(\Leftrightarrow x=\pm\dfrac{\pi}{3}+k2\pi\)