Bài 1: Hàm số lượng giác

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Julian Edward

cho pt \(msinx+2cosx=1-m\). Tìm m để pt có nghiệm \(\left[-\frac{\pi}{2};\frac{\pi}{2}\right]\)

Nguyễn Việt Lâm
6 tháng 10 2020 lúc 23:40

\(x\in\left[-\frac{\pi}{2};\frac{\pi}{2}\right]\Rightarrow\frac{x}{2}\in\left[-\frac{\pi}{4};\frac{\pi}{4}\right]\Rightarrow cos\frac{x}{2}\ne0\)

Đặt \(t=tan\frac{x}{2}\) \(\Rightarrow t\in\left[-1;1\right]\)

Ta có: \(\left\{{}\begin{matrix}sinx=2sin\frac{x}{2}cos\frac{x}{2}=\frac{2sin\frac{x}{2}}{cos\frac{x}{2}}.cos^2\frac{x}{2}=\frac{2t}{1+t^2}\\cosx=cos^2\frac{x}{2}-sin^2\frac{x}{2}=cos^2\frac{x}{2}\left(1-tan^2\frac{x}{2}\right)=\frac{1-t^2}{1+t^2}\end{matrix}\right.\)

Pt trở thành: \(\frac{2mt}{1+t^2}+\frac{2\left(1-t^2\right)}{1+t^2}=1-m\)

\(\Leftrightarrow m\left(t+1\right)^2=3t^2-1\)

\(\Rightarrow m=\frac{3t^2-1}{\left(t+1\right)^2}=\frac{6t^2-2}{2\left(t+1\right)^2}=\frac{-3\left(t^2+2t+1\right)+\left(9t^2+6t+1\right)}{2\left(t+1\right)^2}=-\frac{3}{2}+\frac{\left(3t+1\right)^2}{2\left(t+1\right)^2}\ge-\frac{3}{2}\)

\(\Rightarrow m\ge-\frac{3}{2}\)

Khách vãng lai đã xóa

Các câu hỏi tương tự
Julian Edward
Xem chi tiết
Quang Huy Điền
Xem chi tiết
Julian Edward
Xem chi tiết
Julian Edward
Xem chi tiết
Julian Edward
Xem chi tiết
Julian Edward
Xem chi tiết
Phương lan
Xem chi tiết
Julian Edward
Xem chi tiết
ĐỖ THỊ THANH HẬU
Xem chi tiết