Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Linh Diệp
Xem chi tiết
Nguyễn Lê Phước Thịnh
16 tháng 5 2023 lúc 9:09

2:

a: =>2x^2-4x-2=x^2-x-2

=>x^2-3x=0

=>x=0(loại) hoặc x=3

b: =>(x+1)(x+4)<0

=>-4<x<-1

d: =>x^2-2x-7=-x^2+6x-4

=>2x^2-8x-3=0

=>\(x=\dfrac{4\pm\sqrt{22}}{2}\)

 

Bla bla bla
Xem chi tiết
Minh Hiếu
20 tháng 11 2023 lúc 9:49

\(\sqrt{24+8\sqrt{9-x^2}}=x+2\sqrt{3-x}+4\) \(\left(Đk:-3\le x\le3\right)\)

\(\sqrt{4\left(x+3\right)+8\sqrt{9-x^2}+4\left(3-x\right)}=x+2\sqrt{3-x}+4\)

\(\sqrt{\left(2\sqrt{x+3}+2\sqrt{3-x}\right)^2}=x+2\sqrt{3-x}+4\)

\(2\sqrt{x+3}+2\sqrt{3-x}=x+2\sqrt{3-x}+4\)

\(2\sqrt{x+3}=x+4\)

\(4\left(x+3\right)=x^2+8x+14\)

\(x^2+4x+2=0\)

\(\Delta=16-8=8\)

\(\Delta>0\)=> phương trình có 2 nghiệm phân biệt

\(\left[{}\begin{matrix}x=\dfrac{-4+2\sqrt{2}}{2}=-2+\sqrt{2}\\x=\dfrac{-4-2\sqrt{2}}{2}=-2-\sqrt{2}\end{matrix}\right.\)

do linh
Xem chi tiết
AEri Sone
Xem chi tiết
Học tốt
1 tháng 10 2018 lúc 4:56

\(\Leftrightarrow\sqrt{\left(x+1\right)^2}+\sqrt{\left(x+2\right)^2}+\sqrt{\left(x+3\right)^2}+\sqrt{\left(x+8\right)^2}=8\)

\(\Leftrightarrow x+1+x+2+x+3+x+8=8\)

\(\Leftrightarrow4x+14=8\)

\(\Leftrightarrow x=-\dfrac{6}{4}=-\dfrac{3}{2}\)

Quoc Tran Anh Le
Xem chi tiết
Hà Quang Minh
26 tháng 9 2023 lúc 23:26

a) \(\sqrt {{x^2} - 7x}  = \sqrt { - 9{x^2} - 8x + 3} \)

\(\begin{array}{l} \Rightarrow {x^2} - 7x =  - 9{x^2} - 8x + 3\\ \Rightarrow 10{x^2} + x - 3 = 0\end{array}\)

\( \Rightarrow x =  - \frac{3}{5}\) và \(x = \frac{1}{2}\)

Thay hai nghiệm vừa tìm được vào phương trình \(\sqrt {{x^2} - 7x}  = \sqrt { - 9{x^2} - 8x + 3} \) thì ta thấy chỉ có nghiệm \(x =  - \frac{3}{5}\) thỏa mãn phương trình

Vậy nghiệm của phương trình là \(x =  - \frac{3}{5}\)

b) \(\sqrt {{x^2} + x + 8}  - \sqrt {{x^2} + 4x + 1}  = 0\)

\(\begin{array}{l} \Rightarrow \sqrt {{x^2} + x + 8}  = \sqrt {{x^2} + 4x + 1} \\ \Rightarrow {x^2} + x + 8 = {x^2} + 4x + 1\\ \Rightarrow 3x = 7\\ \Rightarrow x = \frac{7}{3}\end{array}\)

Thay \(x = \frac{7}{3}\) vào phương trình \(\sqrt {{x^2} + x + 8}  - \sqrt {{x^2} + 4x + 1}  = 0\) ta thấy thỏa mãn phương trình

Vậy nghiệm của phương trình đã cho là \(x = \frac{7}{3}\)

c) \(\sqrt {4{x^2} + x - 1}  = x + 1\)

\(\begin{array}{l} \Rightarrow 4{x^2} + x - 1 = {\left( {x + 1} \right)^2}\\ \Rightarrow 4{x^2} + x - 1 = {x^2} + 2x + 1\\ \Rightarrow 3{x^2} - x - 2 = 0\end{array}\)

\( \Rightarrow x =  - \frac{2}{3}\) và \(x = 1\)

Thay hai nghiệm trên vào phương trình \(\sqrt {4{x^2} + x - 1}  = x + 1\) ta thấy cả hai nghiệm đều thỏa mãn

Vậy nghiệm của phương trình trên là \(x =  - \frac{2}{3}\) và \(x = 1\)

d) \(\sqrt {2{x^2} - 10x - 29}  = \sqrt {x - 8} \)

\(\begin{array}{l} \Rightarrow 2{x^2} - 10x - 29 = x - 8\\ \Rightarrow 2{x^2} - 11x - 21 = 0\end{array}\)

\( \Rightarrow x =  - \frac{3}{2}\) và \(x = 7\)

Thay hai nghiệm \(x =  - \frac{3}{2}\) và \(x = 7\) vào phương trình  \(\sqrt {2{x^2} - 10x - 29}  = \sqrt {x - 8} \) ta thấy cả hai đều không thảo mãn phương trình

Vậy phương trình \(\sqrt {2{x^2} - 10x - 29}  = \sqrt {x - 8} \) vô nghiệm

tungteng2003
Xem chi tiết
Ending of Story
Xem chi tiết
Lê Tài Bảo Châu
29 tháng 7 2021 lúc 0:08

1. \(\sqrt{x^2-4}-x^2+4=0\)( ĐK: \(\orbr{\begin{cases}x\ge2\\x\le-2\end{cases}}\))

\(\Leftrightarrow\sqrt{x^2-4}=x^2-4\)

\(\Leftrightarrow\left(x^2-4\right)^2=x^2-4\)

\(\Leftrightarrow\left(x^2-4\right)^2-\left(x^2-4\right)=0\)

\(\Leftrightarrow\left(x^2-4\right)\left(x^2-4-1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x^2=4\\x^2=5\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=\pm2\left(tm\right)\\x=\pm\sqrt{5}\left(tm\right)\end{cases}}\)

Vậy pt có tập no \(S=\left\{2;-2;\sqrt{5};-\sqrt{5}\right\}\)

2. \(\sqrt{x^2-4x+5}+\sqrt{x^2-4x+8}+\sqrt{x^2-4x+9}=3+\sqrt{5}\)ĐK: \(\hept{\begin{cases}x^2-4x+5\ge0\\x^2-4x+8\ge0\\x^2-4x+9\ge0\end{cases}}\)

\(\Leftrightarrow\sqrt{x^2-4x+5}-1+\sqrt{x^2-4x+8}-2+\sqrt{x^2-4x+9}-\sqrt{5}=0\)

\(\Leftrightarrow\frac{x^2-4x+4}{\sqrt{x^2-4x+5}+1}+\frac{x^2-4x+4}{\sqrt{x^2-4x+8}+2}+\frac{x^2-4x+4}{\sqrt{x^2-4x+9}+\sqrt{5}}=0\)

\(\Leftrightarrow\left(x-2\right)^2\left(\frac{1}{\sqrt{x^2-4x+5}+1}+\frac{1}{\sqrt{x^2-4x+8}+2}+\frac{1}{\sqrt{x^2}-4x+9+\sqrt{5}}\right)=0\)

Từ Đk đề bài \(\Rightarrow\frac{1}{\sqrt{x^2-4x+5}+1}+\frac{1}{\sqrt{x^2-4x+8}+2}+\frac{1}{\sqrt{x^2}-4x+9+\sqrt{5}}>0\)

\(\Rightarrow\left(x-2\right)^2=0\)

\(\Leftrightarrow x=2\left(tm\right)\)

Vậy pt có no x=2

Khách vãng lai đã xóa
Hồ Nguyễn Khánh Minh
Xem chi tiết
Trên con đường thành côn...
27 tháng 8 2021 lúc 10:41

undefined

Trên con đường thành côn...
27 tháng 8 2021 lúc 10:44

undefined

Nguyễn Lê Phước Thịnh
27 tháng 8 2021 lúc 13:54

b: Ta có: \(\sqrt{4x+8}+\dfrac{1}{3}\sqrt{9x+18}=3\sqrt{\dfrac{x+2}{4}}+\sqrt{2}\)

\(\Leftrightarrow2\sqrt{x+2}+\dfrac{1}{3}\cdot3\sqrt{x+2}-\dfrac{3}{2}\sqrt{x+2}=\sqrt{2}\)

\(\Leftrightarrow\sqrt{x+2}\cdot\dfrac{3}{2}=\sqrt{2}\)

\(\Leftrightarrow\sqrt{x+2}=\dfrac{2\sqrt{2}}{3}\)

\(\Leftrightarrow x+2=\dfrac{8}{9}\)

hay \(x=-\dfrac{10}{9}\)

Quoc Tran Anh Le
Xem chi tiết
Quoc Tran Anh Le
7 tháng 3 2021 lúc 15:50

Do có quá ít câu hỏi nên bạn nào trả lời được, mình sẽ xóa khỏi mục "Câu hỏi hay" nhé!