Với giá trị nào của
m
thì phương trình \(x^2-\left(3m+1\right)x+m-5=0\) có 1 nghiệm x = -1
Với giá trị nào của
m
thì phương trình \(\left(m-1\right)x^2+2\left(m-1\right)x+m-3=0\) vô nghiệm
Ta có: $a=m-1,b'=m-1,c=m-3$
$\Delta '=b'^2-ac\\=(m-1)^2-(m-1)(m-3)\\=m^2-2m+1-(m^2-4m+3)\\=m^2-2m+1-m^2+4m-3\\=2m-2$
Vì phương trình vô nghiệm
$\Rightarrow \Delta '<0\\\Leftrightarrow 2m-2<0\\\Leftrightarrow 2m<2\\\Leftrightarrow m<1$
Vậy $m<1$
Cho hai phương trình : \(2x^2+\left(3m+1\right)x-9=0\) (1) và \(6x^2+\left(7m-1\right)x-19=0\) (2) . Với giá trị nào của m thì hai phương trình có nghiệm chung? Tìm nghiệm chung đó
Với giá trị nào của
m
thì phương trình \(x^2+mx-m^2=0\) có hai nghiệm phân biệt
Phương trình có 2 nghiệm pb khi:
\(\Delta=m^2+4m^2>0\Leftrightarrow5m^2>0\)
\(\Rightarrow m\ne0\)
Δ=m2+4m2>0⇔5m2>0Δ=m2+4m2>0⇔5m2>0
m≠0
\(\Delta=b^2-4ac=m^2-4m^2=-3m^2\)
Để phương trình có hai nghiệm phân biệt thì \(\Delta>0\)
\(\Leftrightarrow-3m^2>0\Leftrightarrow m^2>0\Leftrightarrow m>0\)
Vậy để phương trình có hai nghiệm phân biệt thì \(m>0\).
Với giá trị nào của
m
thì phương trình \(x^2-8x+m-2=0\) có hai nghiệm trái dấu:
Phương trình có hai nghiệm trái dấu khi \(m-2< 0\Leftrightarrow m< 2\).
Cho phương trình \(x^2-2\left(m-1\right)x+m^2-3m=0\left(1\right)\) (x là ẩn số)
a) Giải phương trình (1) khi m = 5
b) Tìm tất cả giá trị của m để phương trình (1) có 2 nghiệm
a, Thay vào ta được
\(x^2-8x+10=0\)
\(\Delta'=16-10=6>0\)
Vậy pt luôn có 2 nghiệm pb \(x=4\pm\sqrt{6}\)
b, Ta có \(\Delta'=\left(m-1\right)^2-\left(m^2-3m\right)=-2m+1+3m=m+1\)
Để pt có 2 nghiệm khi m >= -1
a)Thay m=5 ta có:
\(x^2-2\left(5-1\right)x+5^2-15=0\\ =>x^2-8x+10=0\)
Công thức nghiệm của pt bâc 2 ta có: b2-4ac=(-8)2-40=24>0
=>Phương trình có 2 nghiệm phân biệt:
xong r tính ra x1 và x2 :v
Chứng minh rằng với mọi giá trị của m thì
phương trình \(\text{ }mx^2-\left(3m+2\right)x+1=0\) luôn có nghiệm
phương trình \(\left(m^2+5\right)x^2-\)\(\left(\sqrt{3}m-2\right)x+1=0\)luôn vô nghiệm
Cho phương trình: \(x^2-2\left(3m+2\right)x+2m^2-3m+5=0\)
a. Giải phương trình với m = -2
b. Tìm các giá trị của m để phương trình trên có một trong các nghiệm bằng 1
c. Tìm các giá trị của m để phương trình trên có nghiệm kép.
Cho phương trình : \(x^2+\left(3m+2\right)x+3m=0\).
Tìm m để phương trình có hai nghiệm phân biệt \(x_1,x_2\) sao cho biểu thức \(Q=\left(x_1+1\right)^4+\left(x_2+1\right)^4\) đạt giá trị nhỏ nhất .
\(\Delta=\left(3m+2\right)^2-12m=9m^2+4>0\)
Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=-3m-2\\x_1x_2=3m\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x_1+1+x_2+1=-3m\\x_1x_2+x_1+x_2+1=-1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x_1+1+x_2+1=-3m\\\left(x_1+1\right)\left(x_2+1\right)=-1\end{matrix}\right.\)
Đặt \(\left\{{}\begin{matrix}x_1+1=a\\x_2+1=b\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a+b=-3m\\ab=-1\end{matrix}\right.\)
\(Q=a^4+b^4\ge2a^2b^2=2\)
Dấu "=" xảy ra khi \(a^2=b^2\Rightarrow\left[{}\begin{matrix}a=b\left(loại\right)\\a=-b\end{matrix}\right.\)
\(\Rightarrow-3m=0\Rightarrow m=0\)
Tìm giá trị của m , sao cho
a, phương trình \(x^2+4\left(m-1\right)x+3m-2=0\) có nghiệm x=11
b,tìm m để phương trình \(3x^2-\left(3m-2\right)x+5-m=0\) có nghiệm x=-3