giúp mình với
cho hệ phương trình \(\left\{{}\begin{matrix}mx+y=3m-1\\x+my=m+1\end{matrix}\right.\). Tìm các giá trị tham số của m để hệ phương trình:
a) Có nghiệm duy nhất;
b) Vô nghiệm;
c)Vô số nghiệm.
Cho phương trình 2x2−(m+1)x+m-1=0. Tìm các giá trị của m để phương trình có hai nghiệm bằng tích của chúng.
1.giải hệ phương trình [2x+1\x+1+3y\y-1=1] [3x\x+1-4y-y-1=10].2.Cho phương trình ẩn:x2+mx-2m-4=0,a:giải phương trình khi m=2,bTìm giá trị của tham số m để phương trình có hai nghiệm phân biệt x1,x2 thỏa mãn x1[1-x2]+x2[1-x1]
(Đề thi học sinh giỏi Bulgari - Mùa xuân 1997)
Tìm giá trị của m để phương trình :
\(\left[x^2-2mx-4\left(m^2+1\right)\right]\left[x^2-4x-2m\left(m^2+1\right)\right]=0\)
có đúng 3 nghiệm phân biệt
Cho phương trình
\(x^2+2\left(m+1\right)x+m^2=0\)
a.Tim m để phương trình có nghiệm
b.Tìm m để phương trinh có 2 nghiệm \(x_1x_2\). Thỏa mãn \(x^2_1+x_2^2-5x_1x_2=13\)
Cho phương trình
\(x^2-2mx+m^2-9=0\)
a.Giải phương trình với m=-2
b.Tìm m để phương trình có 2 nghiệm x1,x2. Thỏa mãn \(x_1^2+x_2^2\left(x_1+x_2\right)=12\)
x2-(m+2)x+m2-1=0
Gọi x1,x2 là 2 nghiệm của phương trình. Tìm m thỏa mãn x1-x2=2
Tìm giá trị nguyên nhỏ nhất của m để pt có 2 nghiệm khác nhau
Bài tập 2: Cho phương trình x2 – 2(m – 1)x + 2m – 3 = 0 (m là tham số) (1)
1. Giải phương trình (1) khi m = 5.
2. CMR: Phương trình (1) luôn có nghiệm với mọi m.
3. Trong trường hợp (1) có hai nghiệm phân biệt.Thiết lập hệ thức liên hệ giữa x1, x2 độc lập với m.
4. Tìm m để phương trình (1) có 2 nghiệm trái dấu.
Cho phương trình :
\(x+2\sqrt{x-1}-m^2+6m-11=0\)
a) Giải phương trình khi \(m=2\)
b) Chứng minh rằng phương trình có nghiệm với mọi giá trị của m