Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
nghathanh
Xem chi tiết
thuc quyen thái
Xem chi tiết
Nguyễn Lê Phước Thịnh
8 tháng 12 2021 lúc 21:27

b: =x-2

d: \(=-x^3+\dfrac{3}{2}-2x\)

thuc quyen thái
Xem chi tiết
Nguyễn Vũ Anh Thư
17 tháng 8 2023 lúc 16:54

Chịu

nguyễn đăng
Xem chi tiết
Nguyễn Hoàng Minh
19 tháng 12 2021 lúc 15:41

\(a,=\dfrac{x^2+4x+3-2x^2+2x+x^2-4x+3}{\left(x-3\right)\left(x+3\right)}=\dfrac{2\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}=\dfrac{2}{x-3}\\ b,=\dfrac{1-2x+3+2y+2x-4}{6x^3y}=\dfrac{2y}{6x^3y}=\dfrac{1}{x^2}\\ c,=\dfrac{75y^2+18xy+10x^2}{30x^2y^3}\\ d,=\dfrac{5x+8-x}{4x\left(x+2\right)}=\dfrac{4\left(x+2\right)}{4x\left(x+2\right)}=\dfrac{1}{x}\\ c,=\dfrac{x^2+2+2x-2-x^2-x-1}{\left(x-1\right)\left(x^2+x+1\right)}=\dfrac{x-1}{\left(x-1\right)\left(x^2+x+1\right)}=\dfrac{1}{x^2+x+1}\)

Mỳ tôm sủi cảoo
Xem chi tiết
Nguyễn Lê Phước Thịnh
5 tháng 3 2022 lúc 18:49

a: (2x+1)(3-x)(4-2x)=0

=>(2x+1)(x-3)(x-2)=0

hay \(x\in\left\{-\dfrac{1}{2};3;2\right\}\)

b: 2x(x-3)+5(x-3)=0

=>(x-3)(2x+5)=0

=>x=3 hoặc x=-5/2

c: =>(x-2)(x+2)+(x-2)(2x-3)=0

=>(x-2)(x+2+2x-3)=0

=>(x-2)(3x-1)=0

=>x=2 hoặc x=1/3

d: =>(x-2)(x-3)=0

=>x=2 hoặc x=3

e: =>(2x+5+x+2)(2x+5-x-2)=0

=>(3x+7)(x+3)=0

=>x=-7/3 hoặc x=-3

f: \(\Leftrightarrow2x^3+5x^2-3x=0\)

\(\Leftrightarrow x\left(2x^2+5x-3\right)=0\)

\(\Leftrightarrow x\left(x+3\right)\left(2x-1\right)=0\)

hay \(x\in\left\{0;-3;\dfrac{1}{2}\right\}\)

Đã Ẩn
Xem chi tiết
Thu Thao
12 tháng 12 2020 lúc 16:29

Bạn chú ý đăng lẻ câu hỏi! 1/

a/ \(=x^3-2x^5\)

b/\(=5x^2+5-x^3-x\)

c/ \(=x^3+3x^2-4x-2x^2-6x+8=x^3=x^2-10x+8\)

d/ \(=x^2-x^3+4x-2x+2x^2-8=3x^2-x^3+2x-8\)

e/ \(=x^4-x^2+2x^3-2x\)

f/ \(=\left(6x^2+x-2\right)\left(3-x\right)=17x^2+5x-6-6x^3\)

Chung Tran
Xem chi tiết
ILoveMath
23 tháng 8 2021 lúc 9:55

a, \(x^4-8x^2+16=\left(x^2-4\right)^2\)

b, \(\left(4x+5\right)^2-\left(5x+4\right)^2=\left(4x+5-5x-4\right)\left(4x+5+5x+4\right)=\left(1-x\right)\left(9x+9\right)=9\left(1-x\right)\left(1+x\right)=9\left(1-x^2\right)\)

c, \(\left(2x-3\right)^2-2\left(2x-3\right)\left(x+2\right)+\left(-x-2\right)^2=\left(2x-3-x-2\right)^2=\left(x-5\right)^2\)

Lấp La Lấp Lánh
23 tháng 8 2021 lúc 10:00

a) \(x^4-8x^2+16=\left(x^2-4\right)^2\)

b) \(\left(4x+5\right)^2-\left(5x+4\right)^2=\left(4x+5-5x-4\right)\left(4x+5+5x+4\right)=9\left(1-x\right)\left(x+1\right)\)c) \(\left(2x-3\right)^2-2.\left(2x-3\right)\left(x+2\right)+\left(-x-2\right)^2=\left(2x-3-x-2\right)^2=\left(x-5\right)^2\)

Huỳnh Xương Hưng
Xem chi tiết
Chung Tran
Xem chi tiết
Huỳnh Thị Thanh Ngân
14 tháng 8 2021 lúc 17:35

Bài 1

A= (x-2)(2x-1)-2x(x+3)=2x2-x-4x+2-2x2-6x=-11x+2

Harry Poter
14 tháng 8 2021 lúc 22:04

Bài 1:

a) \(A=\left(x-2\right)\left(2x-1\right)-2x\left(x+3\right)\)

\(A=2x^2-x-4x+2-2x^2-6x\)

\(A=-11x+2\)

b) \(B=\left(3x-2\right)\left(2x+1\right)-\left(6x-1\right)\left(x+2\right)\)

\(B=6x^2+3x-4x-2-6x^2-12x+x+2\)

\(B=-12x\)

c) \(C=6x\left(2x+3\right)-\left(4x-1\right)\left(3x-2\right)\)

\(C=12x^2+18x-12x^2+8x+3x-2\)

\(C=29x-2\)

d) \(D=\left(2x+3\right)\left(5x-2\right)+\left(x+4\right)\left(2x-1\right)-6x\left(2x-3\right)\)

\(D=10x^2-4x+15x-6+2x^2-x+8x-4-12x^2+18x\)

\(D=36x-10\)

Nguyễn Lê Phước Thịnh
14 tháng 8 2021 lúc 23:00

Bài 2: 

a: Ta có: \(2x\left(3x-5\right)\left(x+11\right)-3x\left(2x+3\right)\left(x+7\right)\)

\(=2x\left(3x^2+33x-5x-55\right)-3x\left(2x^2+14x+3x+21\right)\)

\(=6x^3+56x^2-110x-6x^2-51x^2-63x\)

\(=-117x\)

b: Ta có: \(\left(x^2+5x-6\right)\left(x-1\right)-\left(x+2\right)\left(x^2-x+1\right)-x\left(3x-10\right)\)

\(=x^3+4x^2-11x+6-\left(x^3-x^2+x+2x^2-2x+2\right)-3x^2+10x\)

\(=x^3+x^2-x+6-x^3-x^2+x-2\)

=4

c: Ta có: \(\left(x^2+x+1\right)\left(x-1\right)-x^2\left(x+1\right)+x^2-5\)

\(=x^3-1-x^3-x^2+x^2-5\)

=-6

Thao Nguyen
Xem chi tiết
Nguyễn Nam
6 tháng 12 2017 lúc 19:41

a) \(\left(3x-1\right)\left(2x+7\right)-\left(x+1\right)\left(6x-5\right)=16\)

\(\Leftrightarrow\left(6x^2+21x-2x-7\right)-\left(6x^2-5x+6x-5\right)-16=0\)

\(\Leftrightarrow6x^2+21x-2x-7-6x^2+5x-6x+5-16=0\)

\(\Leftrightarrow18x-18=0\)

\(\Leftrightarrow18x=18\)

\(\Leftrightarrow x=18:18\)

\(\Leftrightarrow x=1\)

Vậy \(x=1\)

b) \(\left(2x+3\right)^2-2\left(2x+3\right)\left(2x-5\right)+\left(2x-5\right)^2=x^2+6x+64\)

\(\Leftrightarrow\left[\left(2x+3\right)-\left(2x-5\right)\right]^2-\left(x^2+6x+64\right)=0\)

\(\Leftrightarrow\left(2x+3-2x+5\right)^2-x^2-6x-64=0\)

\(\Leftrightarrow8^2-x^2-6x-64=0\)

\(\Leftrightarrow64-x^2-6x-64=0\)

\(\Leftrightarrow-x^2-6x=0\)

\(\Leftrightarrow x\left(-x-6\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\-x-6=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\-x=6\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-6\end{matrix}\right.\)

Vậy \(x=0\) hoặc \(x=-6\)

Ly Hoàng
6 tháng 12 2017 lúc 20:13

a) \(\left(3x-1\right)\left(2x+7\right)-\left(x+1\right)\left(6x-5\right)=16\)

\(\Leftrightarrow\left(6x^2+21x-2x-7\right)-\left(6x^2-5x+6x-5\right)-16=0\)

\(\Leftrightarrow6x^2+21x-2x-7-6x^2+5x-6x+5-16=0\)

\(\Leftrightarrow18x-18=0\)

\(\Leftrightarrow18x=18\)

\(\Leftrightarrow x=18:18\)

\(\Leftrightarrow x=1\)

Vậy \(x=1\)

b, \(\left(2x+3\right)^2-2\left(2x+3\right)\left(2x-5\right)+\left(2x- 5\right)^2=x^2+6x+64\)

\(\Leftrightarrow\left[\left(2x+3\right)-\left(2x-5\right)\right]^2- \left(x^2+6x+64\right)=0\)

\(\Leftrightarrow\left(2x+3-2x+5\right)^2-x^2-6x-64=0\)

\(\Leftrightarrow8^2-x^2-6x-64=0\)

\(\Leftrightarrow64-x^2-6x-64=0\)

\(\Leftrightarrow-x^2-6x=0\)

\(\Leftrightarrow x\left(-x-6\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\-x-6=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\-x=6\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-6\end{matrix}\right.\)

Vậy \(x=0\) hoặc \(x=6\)

trandinhbao
22 tháng 12 2017 lúc 20:55

a) (3x1)(2x+7)(x+1)(6x5)=16(3x−1)(2x+7)−(x+1)(6x−5)=16

(6x2+21x2x7)(6x25x+6x5)16=0⇔(6x2+21x−2x−7)−(6x2−5x+6x−5)−16=0

6x2+21x2x76x2+5x6x+516=0⇔6x2+21x−2x−7−6x2+5x−6x+5−16=0

18x18=0⇔18x−18=0

18x=18⇔18x=18

x=18:18⇔x=18:18

x=1⇔x=1

Vậy x=1x=1

b) (2x+3)22(2x+3)(2x5)+(2x5)2=x2+6x+64(2x+3)2−2(2x+3)(2x−5)+(2x−5)2=x2+6x+64

[(2x+3)(2x5)]2(x2+6x+64)=0⇔[(2x+3)−(2x−5)]2−(x2+6x+64)=0

(2x+32x+5)2x26x64=0⇔(2x+3−2x+5)2−x2−6x−64=0

82x26x64=0⇔82−x2−6x−64=0

64x26x64=0⇔64−x2−6x−64=0

x26x=0⇔−x2−6x=0

x(x6)=0⇔x(−x−6)=0

[x=0x6=0⇔[x=0−x−6=0

[x=0x=6⇔[x=0−x=6

[x=0x=6⇔[x=0x=−6

Vậy x=0x=0 hoặc x=6