Cho đường tròn (O) có đường kính AB cố định. CD là một đường kính di động của (O). Các đường thẳng AC, AD cắt tiếp tuyến với (O) tại B lần lượt tại M và N.
a. Chứng minh CMND là tứ giác nội tiếp.
b. Chứng minh trung tuyến AI của tam giác AMN vuông góc với đường thẳng CD.
c. Xác định vị trí của CD để diện tích tứ giác CMND bằng 3 lần diện tích tam giác ACD.
Cho tam giác ABC nhọn (AB < AC) nội tiếp đường tròn (O). Tiếp tuyến tại A của (O) cắt BC tại S. Gọi I là trung điểm của BC.
a) Chứng minh tứ giác SAOI nội tiếp
b) Vẽ dây cung AD vuông góc với SO tại H. AD cắt BC tại K. Chứng minh SD là tiếp tuyến của đường tròn (O)
c) Chứng minh SK.SI = SB.SC
d) Vẽ đường kính PQ đi qua điểm I (Q thuộc cung CD), SP cắt đường tròn (O) tại M. Chứng minh M, K, Q thẳng hàng
Help me