Tìm số tự nhiên X thỏa mãn:
(13x-122):5=5
3x[82-2.(25-1) ]=2022
Tìm số tự nhiên \(x\) thoả mãn:
a) (13\(x\) – 122): 5 = 5;
b) 3\(x\)[82 - 2.(25 - 1)] = 2022.
a)
\(\begin{array}{l}\left( {13x{\rm{ }}-{\rm{ }}{{12}^2}} \right):{\rm{ }}5{\rm{ }} = {\rm{ }}5\\13x{\rm{ }}-{\rm{ }}{12^2} = 5.5\\13x{\rm{ }}-{\rm{ }}144 = 25\\13x = 25 + 144\\13x = 169\\x = 13\end{array}\)
Vậy \(x = 13\)
b)
\(\begin{array}{l}3x\left[ {{8^2} - 2.\left( {{2^5} - {\rm{ }}1} \right)} \right]{\rm{ }} = {\rm{ }}2022\\3x\left[ {64 - 2.\left( {32 - {\rm{ }}1} \right)} \right]{\rm{ }} = {\rm{ }}2022\\3x\left[ {64 - 2.31} \right]{\rm{ }} = {\rm{ }}2022\\3x\left( {64 - 62} \right){\rm{ }} = {\rm{ }}2022\\3x.2 = 2022\\6x = 2022\\x = 337\end{array}\)
Vậy \(x = 337.\)
Tìm số tự nhiên x thỏa mãn:
a)( 13x - 122 ) :5= 5 b)3x [ 82 - 2.(25 - 1 ) ]= 2022
A, ( 13x - 12^2 ) : 5 = 5
=> 13x - 144 = 25
=> 13x = 163
=> 13x = 13 . 13
=> x = 13
B, 3x [ 8^2 - 2 ( 2^5 - 1 ) ] = 2022
3x [ 64 - 2 . 31 ] = 2022
3x . 2 = 2022
3x = 1011
x = 337
HỌC TỐT
Tìm các số tự nhiên x, y thỏa mãn 11y - x2 + 13x = -23
Với: y=0 thì: \(-x^2+13x=-24\text{ nên: }x^2-13x-24=0\text{ thấy ngay phương trình này ko có nghiệm nguyên}\)
\(\text{Nếu: }y>0\text{ thì: }x^2-13x=23+11^y\text{ do đó: }\left(x-1\right)^2-11x=24+11^y\text{ do đó: }\left(x-1\right)^2\text{ chia 11 dư 2}\)
THấy ngay 1 số chia 11 dư 0;+-1 ; +-2; +-3;....;+-5 mà: 0;1;4;9;16;25 không có số nào chia 11 dư 2 nên loại nên phương trình vô nghiệm
Lời giải:
PT $\Leftrightarrow 11^y=x^2-13x-23$
Nếu $x\equiv 0\pmod 3$ thì:
$x^2-13x-23\equiv -23\equiv 1\pmod 3$
Nếu $x\equiv 1\pmod 3$ thì:
$x^2-13x-23\equiv 1-13-23\equiv 1\pmod 3$
Nếu $x\equiv 2\pmod 3$ thì:
$x^2-13x-23\equiv 1-13.2-23\equiv 0\pmod 3$
Do đó $11^y\equiv 0\pmod 3$ (vô lý) hoặc $11^y\equiv 1\pmod 3$
$\Rightarrow (-1)^y\equiv 1\pmod 3$
$\Rightarrow y$ chẵn. Đặt $y=2t$
$11^{2t}-x^2+13x+23=0$
$(2.11^{t})^2-(2x-13)^2=-261$
$(2.11^t-2x-13)(2.11^t+2x+13)=-261$
Đến đây là dạng phương trình tích cơ bản. Bạn có thể dễ dàng giải.
Lời giải:
PT $\Leftrightarrow 11^y=x^2-13x-23$
Nếu $x\equiv 0\pmod 3$ thì:
$x^2-13x-23\equiv -23\equiv 1\pmod 3$
Nếu $x\equiv 1\pmod 3$ thì:
$x^2-13x-23\equiv 1-13-23\equiv 1\pmod 3$
Nếu $x\equiv 2\pmod 3$ thì:
$x^2-13x-23\equiv 1-13.2-23\equiv 0\pmod 3$
Do đó $11^y\equiv 0\pmod 3$ (vô lý) hoặc $11^y\equiv 1\pmod 3$
$\Rightarrow (-1)^y\equiv 1\pmod 3$
$\Rightarrow y$ chẵn. Đặt $y=2t$
$11^{2t}-x^2+13x+23=0$
$(2.11^{t})^2-(2x-13)^2=-261$
$(2.11^t-2x-13)(2.11^t+2x+13)=-261$
Đến đây là dạng phương trình tích cơ bản. Bạn có thể dễ dàng giải.
Tìm tất cả bộ 3 số tự nhiên (x;y;z) thỏa mãn: \(4x^2=y^2+2022^z+18\)
TH1: \(z=0\Rightarrow4x^2-y^2=19\Leftrightarrow\left(2x-y\right)\left(2x+y\right)=19\)
\(\Rightarrow\left(x;y\right)=\left(5;9\right)\)
TH2: \(z=1\Rightarrow4x^2-y^2=2040\Rightarrow\left(2x-y\right)\left(2x+y\right)=2040\)
(ko có nghiệm nguyên)
TH3: \(z\ge2\Rightarrow2022^z⋮4\)
Do \(4x^2;2022^2;18\) đều chẵn \(\Rightarrow y^2\) chẵn \(\Rightarrow y\) chẵn \(\Rightarrow y=2k\)
\(\Rightarrow4x^2=4k^2+2022^z+18\)
\(\Rightarrow4x^2-4k^2-2022^z=18\)
Vế trái chia hết cho 4, vế phải ko chia hết cho 4 nên pt vô nghiệm
Vậy pt có bộ nghiệm tự nhiên duy nhất: \(\left(x;y;z\right)=\left(5;9;0\right)\)
Tính B = \(13x^7-5y^3+2022\) tại x,y thỏa mãn: \(\left|x-1\right|+\left(y+2\right)^{2022}=0\)
\(\left|x-1\right|+\left(y+2\right)^{2022}=0\\ \Rightarrow\left\{{}\begin{matrix}\left|x-1\right|=0\\\left(y+2\right)^{2022}=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x-1=0\\y+2=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=1\\y=-2\end{matrix}\right.\\ \Rightarrow B=13.1-5\left(-8\right)+2022=13+40+2022=2075\)
|x-1|+(y+2)2022=0
Do |x-1| và (y+2)2022 đều ≥0⇒\(\left\{{}\begin{matrix}x-1=0\\y+2=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=1\\y=-2\end{matrix}\right.\)
⇒B=13.(1)7-5.(-2)3+2022=13+40+2022=2075
1) Cho hệ phương trình \(\left\{{}\begin{matrix}x+y=3m+2\\2x-3y=m-11\end{matrix}\right.\)
(m là tham số)
Tìm giá trị m không âm để hệ phương trình có nghiệm (x;y) thỏa mãn (x2+1)+(y2+1)=12
2) Tìm một số tự nhiên có hai chữ số biết rằng tổng của 5 lần chữ số hàng chục và 2 lần chuex số hàng đơn vị là 29.Nếu viết hai chữ số của nó theo thứ tự ngược lại thì số mới có hai chữ số lớn hơn số ban đầu 36 đơn vị.
Bài 2:
Gọi số ban đầu là \(\overline{ab}\)
Theo đề, ta có: 5a+2b=29 và 10b+a-10a-b=36
=>5a+2b=29 và -9a+9b=36
=>a=3 và b=7
a, Tìm số tự nhiên x thỏa mãn:
264:x dư 24
363:x dư 43
b, Tìm số tự nhiên có 3 chữ số thỏa mãn chia 17 dư 8 chia 25 dư 16
Tìm số tự nhiên x, thỏa mãn đẳng thức: \(5^{x^2-35}=25^x\)
Giúp mk vs! Cn nhìu
<=>\(5^{x^2-35}=5^{2x}\Leftrightarrow x^2-35=2x\Leftrightarrow x^2-2x-35=0\Leftrightarrow\orbr{\begin{cases}x=7\\x=-5\end{cases}}\)
\(5^{x^2-35}=25^x\Leftrightarrow5^{x^2-35}=\left(5^2\right)^x\Leftrightarrow5^{x^2-35}=5^{2x}\Leftrightarrow x^2-35=2x\Leftrightarrow x^2-2x-35=0\)
\(\Leftrightarrow x^2-2x+1=36\Leftrightarrow\left(x-1\right)^2=36\Leftrightarrow\orbr{\begin{cases}x-1=-6\\x-1=6\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-5\\x=7\end{cases}}\)
Vậy ..........
a, cho x, y là 2 số thoả mãn (2x - y + 7)\(^{2022}\) + |x - 1|\(^{2023}\) ≤ 0. Tính giá trị của biểu thức: P = x\(^{2023}\) + (y - 10)\(^{2023}\)
b, Tìm số tự nhiên x, y biết 25 - y\(^2\) = 8(x = 2023)\(^2\)
c, Tìm giá trị nhỏ nhất của biểu thức: P = (|x - 3| + 2)\(^2\) + |y + 3| + 2019
d, Tìm cặp số nguyên x, y biết: (2 - x)(x + 1) = |y + 1|
a: \(\left(2x-y+7\right)^{2022}>=0\forall x,y\)
\(\left|x-1\right|^{2023}>=0\forall x\)
=>\(\left(2x-y+7\right)^{2022}+\left|x-1\right|^{2023}>=0\forall x,y\)
mà \(\left(2x-y+7\right)^{2022}+\left|x-1\right|^{2023}< =0\forall x,y\)
nên \(\left(2x-y+7\right)^{2022}+\left|x-1\right|^{2023}=0\)
=>\(\left\{{}\begin{matrix}2x-y+7=0\\x-1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=2x+7=9\end{matrix}\right.\)
\(P=x^{2023}+\left(y-10\right)^{2023}\)
\(=1^{2023}+\left(9-10\right)^{2023}\)
=1-1
=0
c: \(\left|x-3\right|>=0\forall x\)
=>\(\left|x-3\right|+2>=2\forall x\)
=>\(\left(\left|x-3\right|+2\right)^2>=4\forall x\)
mà \(\left|y+3\right|>=0\forall y\)
nên \(\left(\left|x-3\right|+2\right)^2+\left|y+3\right|>=4\forall x,y\)
=>\(P=\left(\left|x-3\right|+2\right)^2+\left|y-3\right|+2019>=4+2019=2023\forall x,y\)
Dấu '=' xảy ra khi x-3=0 và y-3=0
=>x=3 và y=3