P=\(\dfrac{a^2+\sqrt{a}}{a-\sqrt{a}+1}-\dfrac{2a+\sqrt{a}}{\sqrt{a}}+1\)
a) Rút gọn P
b) Tìm GTNN của P
cho p=\(\dfrac{a^2+\sqrt{a}}{a-\sqrt{a}+1}-\dfrac{2a+\sqrt{a}}{\sqrt{a}}+1\)
a) rút gọn p
b) tìm GTNN
lm nhanh giúp mk nhé!
a) \(P=\dfrac{a^2+\sqrt{a}}{a-\sqrt{a}+1}-\dfrac{2a+\sqrt{a}}{\sqrt{a}}+1\left(a>0\right)\)
\(=\dfrac{\sqrt{a}\left(\sqrt{a}+1\right)\left(a-\sqrt{a}+1\right)}{a-\sqrt{a}+1}-\dfrac{\sqrt{a}\left(2\sqrt{a}+1\right)}{\sqrt{a}}+1\)
\(=a+\sqrt{a}-\left(2\sqrt{a}+1\right)+1=a-\sqrt{a}\)
b) Ta có: \(a-\sqrt{a}=a-2.\sqrt{a}.\dfrac{1}{2}+\left(\dfrac{1}{2}\right)^2-\dfrac{1}{4}=\left(\sqrt{a}-\dfrac{1}{2}\right)^2-\dfrac{1}{4}\)
\(\ge-\dfrac{1}{4}\)
\(\Rightarrow P_{min}=-\dfrac{1}{4}\) khi \(a=\dfrac{1}{4}\)
Cho P=\(\dfrac{a^2+\sqrt{a}}{a-\sqrt{a}+1}-\dfrac{2a+\sqrt{a}}{\sqrt{a}}+1\)
a)Rút gọn P
b)Tìm giá trị nhỏ nhất
Lm nhanh giúp mk nhé!
a) Ta có: \(P=\dfrac{a^2+\sqrt{a}}{a-\sqrt{a}+1}-\dfrac{2a+\sqrt{a}}{\sqrt{a}}+1\)
\(=\sqrt{a}\left(\sqrt{a}+1\right)-2\sqrt{a}-1+1\)
\(=a+\sqrt{a}-2\sqrt{a}\)
\(=a-\sqrt{a}\)
b)\(P=a-\sqrt{a}=a-2.\dfrac{1}{2}\sqrt{a}+\dfrac{1}{4}-\dfrac{1}{4}=\left(\sqrt{a}-\dfrac{1}{2}\right)^2-\dfrac{1}{4}\ge-\dfrac{1}{4}\)
Dấu "=" xảy ra khi \(\sqrt{a}=\dfrac{1}{2}\Leftrightarrow a=\dfrac{1}{4}\)
Vậy \(P_{min}=-\dfrac{1}{4}\)
Này, mình nói bạn Thịnh là bài này mk nghĩ ý b bạn vẫn làm được mà bạn chỉ làm mỗi ý a là sao? Làm ý a bỏ ý b hả, zì kì thế
3.P=\(\left(\dfrac{3\sqrt{a}}{a+\sqrt{ab}+b}-\dfrac{3a}{a\sqrt{a}-b\sqrt{b}}+\dfrac{1}{\sqrt{a}-\sqrt{b}}\right)\):\(\left(\dfrac{\left(a-1\right).\left(\sqrt{a}-\sqrt{b}\right)}{2a+2\sqrt{ab}+2b}\right)\)
a)Rút gọn P
b)Tìm những giá trị nguyên của a để P có giá trị nguyên
Cho \(P=\dfrac{\sqrt{x}}{\sqrt{x}-1}+\dfrac{3}{\sqrt{x}+1}-\dfrac{6\sqrt{x}-4}{x-1}\)
a, Rút gọn P
b, Tìm GTNN của P
ĐKXĐ: \(x\ge0;x\ne1\)
\(P=\dfrac{\sqrt{x}\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}+\dfrac{3\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}-\dfrac{6\sqrt{x}-4}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(=\dfrac{x+\sqrt{x}+3\sqrt{x}-3-6\sqrt{x}+4}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(=\dfrac{x-2\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=\dfrac{\left(\sqrt{x}-1\right)^2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(=\dfrac{\sqrt{x}-1}{\sqrt{x}+1}\)
b.
\(P=\dfrac{2\sqrt{x}-\sqrt{x}-1}{\sqrt{x}+1}=-1+\dfrac{2\sqrt{x}}{\sqrt{x}+1}\)
Do \(\left\{{}\begin{matrix}2\sqrt{x}\ge0\\\sqrt{x}+1>0\end{matrix}\right.\) \(\Rightarrow\dfrac{2\sqrt{x}}{\sqrt{x}+1}\ge0\)
\(\Rightarrow P\ge-1\)
\(P_{min}=-1\) khi \(x=0\)
a) Ta có: \(P=\dfrac{\sqrt{x}}{\sqrt{x}-1}+\dfrac{3}{\sqrt{x}+1}-\dfrac{6\sqrt{x}-4}{x-1}\)
\(=\dfrac{x+\sqrt{x}+3\sqrt{x}-3-6\sqrt{x}+4}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(=\dfrac{x-2\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(=\dfrac{\sqrt{x}-1}{\sqrt{x}+1}\)
cho P= (\(\dfrac{2\sqrt{x}}{\sqrt{x}+3}\)+ \(\dfrac{\sqrt{x}}{\sqrt{x-3}}\)-\(\dfrac{3x+3}{x-9}\)) : (\(\dfrac{2\sqrt{x}-2}{\sqrt{x}-3}\)-1)
a, Rút gọn P
b, Tìm x để P < \(\dfrac{1}{2}\)
c, Tìm GTNN của P
a: Ta có: \(P=\left(\dfrac{2\sqrt{x}}{\sqrt{x}+3}+\dfrac{\sqrt{x}}{\sqrt{x}-3}-\dfrac{3x+3}{x-9}\right):\left(\dfrac{2\sqrt{x}-2}{\sqrt{x}-3}-1\right)\)
\(=\dfrac{2x-6\sqrt{x}+x+3\sqrt{x}-3x-3}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\cdot\dfrac{\sqrt{x}-3}{2\sqrt{x}-2-\sqrt{x}+3}\)
\(=\dfrac{-3\left(\sqrt{x}+1\right)}{\sqrt{x}+3}\cdot\dfrac{1}{\sqrt{x}+1}\)
\(=\dfrac{-3}{\sqrt{x}+3}\)
\(P=\dfrac{a^2+\sqrt{a}}{a-\sqrt{a}+1}-\dfrac{2a+\sqrt{a}}{\sqrt{a}}+1\)
a) Rút gọn biểu thức P
b) Biết a > 1. Hãy so sánh P với \(\left|P\right|\)
a)
ĐK: \(a>0\)
\(P=\dfrac{\sqrt{a}\left(\sqrt{a}^3+1\right)}{a-\sqrt{a}+1}-\dfrac{\sqrt{a}\left(2\sqrt{a}+1\right)}{\sqrt{a}}+1\\ =\sqrt{a}\left(\sqrt{a}+1\right)-\left(2\sqrt{a}+1\right)+1\\ =a+\sqrt{a}-2\sqrt{a}-1+1\\ =a-\sqrt{a}\)
b)
\(a>1\Rightarrow\sqrt{a}-1>0\Rightarrow\sqrt{a}\left(\sqrt{a}-1\right)>0\)
\(\Rightarrow\left|P\right|=P\)
1. cho P = \(\left(\dfrac{1}{\sqrt{a}-1}-\dfrac{2\sqrt{a}}{a-1}+\dfrac{\sqrt{a}}{a+1}\right):\dfrac{\sqrt{a}}{\sqrt{a}+1}\)
a. Rút gọn P
b. Tìm a để P < \(\dfrac{1}{2}\)
Sửa đề: \(P=\left(\dfrac{1}{\sqrt{a}-1}-\dfrac{2\sqrt{a}}{a-1}+\dfrac{\sqrt{a}}{\sqrt{a}+1}\right):\dfrac{\sqrt{a}}{\sqrt{a}+1}\)
ĐKXĐ: \(\left\{{}\begin{matrix}x>0\\x\ne1\end{matrix}\right.\)
a) Ta có: \(P=\left(\dfrac{1}{\sqrt{a}-1}-\dfrac{2\sqrt{a}}{a-1}+\dfrac{\sqrt{a}}{\sqrt{a}+1}\right):\dfrac{\sqrt{a}}{\sqrt{a}+1}\)
\(=\left(\dfrac{\sqrt{a}+1}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}-\dfrac{2\sqrt{a}}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}+\dfrac{\sqrt{a}\left(\sqrt{a}-1\right)}{\left(\sqrt{a}+1\right)\left(\sqrt{a}-1\right)}\right):\dfrac{\sqrt{a}}{\sqrt{a}+1}\)
\(=\dfrac{\sqrt{a}+1-2\sqrt{a}+a-\sqrt{a}}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}:\dfrac{\sqrt{a}}{\sqrt{a}+1}\)
\(=\dfrac{a-2\sqrt{a}+1}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}\cdot\dfrac{\sqrt{a}+1}{\sqrt{a}}\)
\(=\dfrac{\left(\sqrt{a}-1\right)^2}{\sqrt{a}\left(\sqrt{a}-1\right)}\)
\(=\dfrac{\sqrt{a}-1}{\sqrt{a}}\)
b) Để \(P< \dfrac{1}{2}\) thì \(P-\dfrac{1}{2}< 0\)
\(\Leftrightarrow\dfrac{\sqrt{a}-1}{\sqrt{a}}-\dfrac{1}{2}< 0\)
\(\Leftrightarrow\dfrac{2\left(\sqrt{a}-1\right)}{2\sqrt{a}}-\dfrac{\sqrt{a}}{2\sqrt{a}}< 0\)
\(\Leftrightarrow\dfrac{2\sqrt{a}-2-\sqrt{a}}{2\sqrt{a}}< 0\)
\(\Leftrightarrow\dfrac{\sqrt{a}-2}{2\sqrt{a}}< 0\)
mà \(2\sqrt{a}>0\forall a\) thỏa mãn ĐKXĐ
nên \(\sqrt{a}-2< 0\)
\(\Leftrightarrow\sqrt{a}< 2\)
hay a<4
Kết hợp ĐKXĐ, ta được: \(\left\{{}\begin{matrix}0< a< 4\\a\ne1\end{matrix}\right.\)
Vậy: Để \(P< \dfrac{1}{2}\) thì \(\left\{{}\begin{matrix}0< a< 4\\a\ne1\end{matrix}\right.\)
Cho biểu thức : P= 1+\(\left(\dfrac{2a+\sqrt{a}-1}{1-a}-\dfrac{2a\sqrt{a}-\sqrt{a}+a}{1-a\sqrt{a}}\right).\dfrac{a-\sqrt{a}}{2\sqrt{a}-1}\)
a,Rút gọn P .
b,Chứng minh rằng \(P>\dfrac{2}{3}\)
c,Cho \(P=\dfrac{\sqrt{6}}{1+\sqrt{6}}\) ,tìm giá trị của a?
a ĐKXĐ \(a\ge0,a\ne\dfrac{1}{4},a\ne1\)
\(\Rightarrow P=1+\left(\dfrac{\left(2\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}{\left(1-\sqrt{a}\right)\left(1+\sqrt{a}\right)}-\dfrac{\sqrt{a}\left(2\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}{\left(1-\sqrt{a}\right)\left(1+\sqrt{a}+a\right)}\right)\cdot\dfrac{\sqrt{a}\left(\sqrt{a}-1\right)}{2\sqrt{a}-1}\)
= \(1+\left(\dfrac{\left(-1\right)\left(2\sqrt{a}-1\right)}{\sqrt{a}-1}+\dfrac{\sqrt{a}\left(2\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}{\left(\sqrt{a}-1\right)\left(a+\sqrt{a}+1\right)}\right)\cdot\dfrac{\sqrt{a}\left(\sqrt{a}+1\right)}{2\sqrt{a}-1}\)
= \(1+\left(-1+\dfrac{\sqrt{a}\left(\sqrt{a}+1\right)}{a+\sqrt{a}+1}\right)\sqrt{a}\)
= \(1-\sqrt{a}+\dfrac{a\sqrt{a}+a}{a+\sqrt{a}+1}\) = \(\dfrac{\left(1-\sqrt{a}\right)\left(1+\sqrt{a}+a\right)+a\sqrt{a}+a}{a+\sqrt{a}+1}=\dfrac{1-a\sqrt{a}+a\sqrt{a}+a}{a+\sqrt{a}+1}=\dfrac{a+1}{a+\sqrt{a}+1}\)
b Xét hiệu \(P-\dfrac{2}{3}=\dfrac{a+1}{a+\sqrt{a}+1}-\dfrac{2}{3}=\dfrac{3a+3-2a-2\sqrt{a}-2}{a+\sqrt{a}+1}=\dfrac{a-2\sqrt{a}+1}{a+\sqrt{a}+1}=\dfrac{\left(\sqrt{a}-1\right)^2}{a+\sqrt{a}+\dfrac{1}{4}+\dfrac{3}{4}}=\dfrac{\left(\sqrt{a}-1\right)^2}{\left(\sqrt{a}+\dfrac{1}{2}\right)^2+\dfrac{3}{4}}>0\) \(\Rightarrow P>\dfrac{2}{3}\)
c Ta có \(P=\dfrac{\sqrt{6}}{\sqrt{6}+1}\Rightarrow\dfrac{a+1}{a+\sqrt{a}+1}=\dfrac{\sqrt{6}}{\sqrt{6}+1}\) \(\Rightarrow\left(a+1\right)\left(\sqrt{6}+1\right)=\sqrt{6}\left(a+\sqrt{a}+1\right)\Leftrightarrow a\sqrt{6}+a+\sqrt{6}+1=a\sqrt{6}+\sqrt{6a}+\sqrt{6}\)
\(\Leftrightarrow a-\sqrt{6a}+1=0\Leftrightarrow a-\sqrt{6a}+\dfrac{6}{4}-\dfrac{2}{4}=0\Leftrightarrow\left(\sqrt{a}-\dfrac{\sqrt{6}}{2}\right)^2=\dfrac{1}{2}\)
\(\Rightarrow\left[{}\begin{matrix}\sqrt{a}=\dfrac{\sqrt{6}+1}{2}\\\sqrt{a}=\dfrac{1-\sqrt{6}}{2}\left(L\right)\end{matrix}\right.\) (Do \(\sqrt{a}\ge0\)) \(\Rightarrow a=\dfrac{\left(\sqrt{6}+1\right)^2}{4}=\dfrac{7+2\sqrt{6}}{4}\left(TM\right)\)
Vậy...
\(\left\{1+\dfrac{\sqrt{a}}{a+1}\right\}:\left\{\dfrac{1}{\sqrt{a}-1}-\dfrac{2\sqrt{a}}{a\sqrt{a}+\sqrt{a}-a-1}\right\}\)
a, Rút gọn P
b, Tìm giá trị của a để P<1
c, Tìm giá trị của P nếu a = 19-8\(\sqrt{3}\)
a: \(P=\dfrac{a+\sqrt{a}+1}{a+1}:\left(\dfrac{1}{\sqrt{a}-1}-\dfrac{2\sqrt{a}}{\left(a+1\right)\left(\sqrt{a}-1\right)}\right)\)
\(=\dfrac{a+\sqrt{a}+1}{a+1}:\dfrac{a+1-2\sqrt{a}}{\left(a+1\right)\left(\sqrt{a}-1\right)}\)
\(=\dfrac{a+\sqrt{a}+1}{\sqrt{a}-1}\)
b: Để P<1 thì P-1<0
\(\Leftrightarrow\dfrac{a+\sqrt{a}+1-\sqrt{a}+1}{\sqrt{a}-1}< 0\)
hay 0<a<1