Bài 1: Căn bậc hai

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
hello hello

1. cho P = \(\left(\dfrac{1}{\sqrt{a}-1}-\dfrac{2\sqrt{a}}{a-1}+\dfrac{\sqrt{a}}{a+1}\right):\dfrac{\sqrt{a}}{\sqrt{a}+1}\)

a. Rút gọn P

b. Tìm a để P < \(\dfrac{1}{2}\)

Nguyễn Lê Phước Thịnh
22 tháng 1 2021 lúc 21:46

Sửa đề: \(P=\left(\dfrac{1}{\sqrt{a}-1}-\dfrac{2\sqrt{a}}{a-1}+\dfrac{\sqrt{a}}{\sqrt{a}+1}\right):\dfrac{\sqrt{a}}{\sqrt{a}+1}\)

ĐKXĐ: \(\left\{{}\begin{matrix}x>0\\x\ne1\end{matrix}\right.\)

a) Ta có: \(P=\left(\dfrac{1}{\sqrt{a}-1}-\dfrac{2\sqrt{a}}{a-1}+\dfrac{\sqrt{a}}{\sqrt{a}+1}\right):\dfrac{\sqrt{a}}{\sqrt{a}+1}\)

\(=\left(\dfrac{\sqrt{a}+1}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}-\dfrac{2\sqrt{a}}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}+\dfrac{\sqrt{a}\left(\sqrt{a}-1\right)}{\left(\sqrt{a}+1\right)\left(\sqrt{a}-1\right)}\right):\dfrac{\sqrt{a}}{\sqrt{a}+1}\)

\(=\dfrac{\sqrt{a}+1-2\sqrt{a}+a-\sqrt{a}}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}:\dfrac{\sqrt{a}}{\sqrt{a}+1}\)

\(=\dfrac{a-2\sqrt{a}+1}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}\cdot\dfrac{\sqrt{a}+1}{\sqrt{a}}\)

\(=\dfrac{\left(\sqrt{a}-1\right)^2}{\sqrt{a}\left(\sqrt{a}-1\right)}\)

\(=\dfrac{\sqrt{a}-1}{\sqrt{a}}\)

b) Để \(P< \dfrac{1}{2}\) thì \(P-\dfrac{1}{2}< 0\)

\(\Leftrightarrow\dfrac{\sqrt{a}-1}{\sqrt{a}}-\dfrac{1}{2}< 0\)

\(\Leftrightarrow\dfrac{2\left(\sqrt{a}-1\right)}{2\sqrt{a}}-\dfrac{\sqrt{a}}{2\sqrt{a}}< 0\)

\(\Leftrightarrow\dfrac{2\sqrt{a}-2-\sqrt{a}}{2\sqrt{a}}< 0\)

\(\Leftrightarrow\dfrac{\sqrt{a}-2}{2\sqrt{a}}< 0\)

mà \(2\sqrt{a}>0\forall a\) thỏa mãn ĐKXĐ

nên \(\sqrt{a}-2< 0\)

\(\Leftrightarrow\sqrt{a}< 2\)

hay a<4

Kết hợp ĐKXĐ, ta được: \(\left\{{}\begin{matrix}0< a< 4\\a\ne1\end{matrix}\right.\)

Vậy: Để \(P< \dfrac{1}{2}\) thì \(\left\{{}\begin{matrix}0< a< 4\\a\ne1\end{matrix}\right.\)

Thanh Hoàng Thanh
22 tháng 1 2021 lúc 21:51


Các câu hỏi tương tự
Kamado Tanjirou ๖ۣۜ( ๖ۣۜ...
Xem chi tiết
ngọc linh
Xem chi tiết
Ngọc Hà
Xem chi tiết
Minatozaki Sana
Xem chi tiết
Aikatsu
Xem chi tiết
sana army
Xem chi tiết
Ho Truc
Xem chi tiết
Minatozaki Sana
Xem chi tiết
Minatozaki Sana
Xem chi tiết