Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Mai Thị Thúy
Xem chi tiết
Lê Thu Hiền
Xem chi tiết
Kim Trân Ni
Xem chi tiết
thùy linh
Xem chi tiết
Nguyễn Lê Phước Thịnh
16 tháng 12 2022 lúc 13:06

1: \(\Leftrightarrow2x^2-10x-3x-2x^2=0\)

=>-13x=0

=>x=0

2: \(\Leftrightarrow5x-2x^2+2x^2-2x=13\)

=>3x=13

=>x=13/3

3: \(\Leftrightarrow4x^4-6x^3-4x^3+6x^3-2x^2=0\)

=>-2x^2=0

=>x=0

4: \(\Leftrightarrow5x^2-5x-5x^2+7x-10x+14=6\)

=>-8x=6-14=-8

=>x=1

2611
16 tháng 12 2022 lúc 13:08

`1)2x(x-5)-(3x+2x^2)=0`

`<=>2x^2-10x-3x-2x^2=0`

`<=>-13x=0`

`<=>x=0`

___________________________________________________

`2)x(5-2x)+2x(x-1)=13`

`<=>5x-2x^2+2x^2-2x=13`

`<=>3x=13<=>x=13/3`

___________________________________________________

`3)2x^3(2x-3)-x^2(4x^2-6x+2)=0`

`<=>4x^4-6x^3-4x^4+6x^3-2x^2=0`

`<=>x=0`

___________________________________________________

`4)5x(x-1)-(x+2)(5x-7)=0`

`<=>5x^2-5x-5x^2+7x-10x+14=0`

`<=>-8x=-14`

`<=>x=7/4`

___________________________________________________

`5)6x^2-(2x-3)(3x+2)=1`

`<=>6x^2-6x^2-4x+9x+6=1`

`<=>5x=-5<=>x=-1`

___________________________________________________

`6)2x(1-x)+5=9-2x^2`

`<=>2x-2x^2+5=9-2x^2`

`<=>2x=4<=>x=2`

Nguyễn Thị Bình Yên
Xem chi tiết
Nguyễn Việt Lâm
3 tháng 1 2019 lúc 23:21

1/ Đặt \(\sqrt{x^2+2}=t>0\Rightarrow x^2=t^2-2\)

\(t^2-2+\left(3-t\right)x-1-2t=0\)

\(\Leftrightarrow t^2-2t-3-\left(t-3\right)x=0\)

\(\Leftrightarrow\left(t-3\right)\left(t+1\right)-\left(t-3\right)x=0\)

\(\Leftrightarrow\left(t-3\right)\left(t+1-x\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}t-3=0\\t+1-x=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}t=3\\t=x-1\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x^2+2}=3\left(1\right)\\\sqrt{x^2+2}=x-1\left(2\right)\end{matrix}\right.\)

\(\left(1\right)\Leftrightarrow x^2=7\Rightarrow x=\pm\sqrt{7}\)

\(\left(2\right)\Leftrightarrow\left\{{}\begin{matrix}x-1\ge0\\x^2+2=\left(x-1\right)^2\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x\ge1\\x^2+2=x^2-2x+1\end{matrix}\right.\) \(\Rightarrow x=\dfrac{-1}{2}\left(l\right)\)

Vậy nghiệm pt là \(x=\pm\sqrt{7}\)

2/

\(x^2+3-6x\sqrt{x^2+3}+9x^2-\sqrt{x^2+3}+3x-2=0\)

\(\Leftrightarrow\left(\sqrt{x^2+3}-3x\right)^2-\left(\sqrt{x^2+3}-3x\right)-2=0\)

Đặt \(\sqrt{x^2+3}-3x=t\)

\(\Rightarrow t^2-t-2=0\) \(\Rightarrow\left[{}\begin{matrix}t=-1\\t=2\end{matrix}\right.\)

TH1: \(\sqrt{x^2+3}-3x=-1\Rightarrow\sqrt{x^2+3}=3x-1\)

\(\Leftrightarrow\left\{{}\begin{matrix}3x-1\ge0\\x^2+3=\left(3x-1\right)^2\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x\ge\dfrac{1}{3}\\8x^2-6x-2=0\end{matrix}\right.\) \(\Rightarrow x=1\)

TH2: \(\sqrt{x^2+3}-3x=2\Leftrightarrow\sqrt{x^2+3}=3x+2\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\ge\dfrac{-2}{3}\\x^2+3=\left(3x+2\right)^2\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x\ge\dfrac{-2}{3}\\8x^2+12x+1=0\end{matrix}\right.\) \(\Rightarrow x=\dfrac{-3+\sqrt{7}}{4}\)

Nguyễn Việt Lâm
3 tháng 1 2019 lúc 23:27

3/ ĐKXĐ: \(\dfrac{3}{2}\le x\le\dfrac{5}{2}\)

\(1.\sqrt{2x-3}+1.\sqrt{5-2x}\le\sqrt{\left(1^2+1^2\right)\left(2x-3+5-2x\right)}=2\)

\(\Rightarrow VT\le2\)

\(VP=3\left(x^2-4x+4\right)+2=3\left(x-2\right)^2+2\ge2\)

\(\Rightarrow VT=VP\Leftrightarrow\left\{{}\begin{matrix}x-2=0\\2x-3=5-2x\end{matrix}\right.\) \(\Rightarrow x=2\)

Vậy pt có nghiệm duy nhất \(x=2\)

4/

ĐKXĐ: \(x\ge\dfrac{-5}{4}\)

\(x^2-2x+1+4x+5-6\sqrt{4x+5}+9=0\)

\(\Leftrightarrow\left(x-1\right)^2+\left(\sqrt{4x+5}-3\right)^2=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}x-1=0\\\sqrt{4x+5}-3=0\end{matrix}\right.\) \(\Rightarrow x=1\)

Vậy pt có nghiệm duy nhất \(x=1\)

Nguyễn Việt Lâm
3 tháng 1 2019 lúc 23:41

5/

\(\sqrt{2x^2+5x+12}+\sqrt{2x^2+3x+2}-\left(x+5\right)=0\)

Đặt \(\left\{{}\begin{matrix}\sqrt{2x^2+5x+12}=a>0\\\sqrt{2x^2+3x+2}=b>0\end{matrix}\right.\) \(\Rightarrow a^2-b^2=2x+10=2\left(x+5\right)\)

\(\Rightarrow x+5=\dfrac{a^2-b^2}{2}\)

Phương trình đã cho trở thành:

\(a+b-\left(x+5\right)=0\) (1)

\(\Leftrightarrow a+b-\dfrac{a^2-b^2}{2}=0\Leftrightarrow2\left(a+b\right)-\left(a+b\right)\left(a-b\right)=0\)

\(\Leftrightarrow\left(a+b\right)\left(2-a+b\right)=0\Rightarrow2-a+b=0\) (2) (do \(a+b>0\))

Từ (1), (2) có hệ: \(\left\{{}\begin{matrix}a+b=x+5\\2-a+b=0\end{matrix}\right.\) \(\Rightarrow2b+2=x+5\Rightarrow2b=x+3\)

\(\Rightarrow2\sqrt{2x^2+3x+2}=x+3\) \(\Leftrightarrow\left\{{}\begin{matrix}x\ge-3\\4\left(2x^2+3x+2\right)=\left(x+3\right)^2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\ge-3\\7x^2+6x-1=0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=-1\\x=\dfrac{1}{7}\end{matrix}\right.\)

Đỗ thị như quỳnh
Xem chi tiết
Lưu Ngọc Hải Đông
20 tháng 7 2017 lúc 20:11

1. \(\left(x+5\right)\left(x^2-5x+25\right)-\left(x-2\right)\left(x^2+2x+4\right)\)

\(=x^3+125-\left(x^3-8\right)=x^3+125-x^3+8=133\)

Mới vô
20 tháng 7 2017 lúc 20:17

1,

\(\left(x+5\right)\left(x^2-5x+25\right)-\left(x-2\right)\left(x^2+2x+4\right)\\ =\left(x^3+5^3\right)-\left(x^3-2^3\right)\\ =x^3+125-x^3+8\\ =\left(x^3-x^3\right)+\left(125+8\right)\\ =133\)

b,

\(\left(2x-3\right)\left(4x^2+6x+9\right)-\left(2x+1\right)^3\\ =\left[\left(2x\right)^3-3^3\right]-\left[\left(2x\right)^3+3\cdot\left(2x\right)^2\cdot1+3\cdot2x+1+1\right]\\ =\left(8x^3-27\right)-\left(8x^3+12x^2+6x+1\right)\\ =8x^3-27-8x^3-12x^2-6x-1\\ =\left(8x^3-8x^3\right)-\left(12x^2+6x\right)-\left(27+1\right)\\ =-6x\left(2x+1\right)-28\\ =\left(-2\right)\left[3x\left(2x+1\right)+14\right]\)

Ng KimAnhh
Xem chi tiết
Nguyễn Lê Phước Thịnh
25 tháng 2 2023 lúc 14:43

a: \(=-2x^2\cdot3x+2x^2\cdot4X^3-2x^2\cdot7+2x^2\cdot x^2\)

\(=8x^5+2x^4-6x^3-14x^2\)

b: \(=2x^3-3x^2-5x+6x^2-9x-15\)

\(=2x^3+3x^2-14x-15\)

c: \(=\dfrac{-6x^5}{3x^3}+\dfrac{7x^4}{3x^3}-\dfrac{6x^3}{3x^3}=-2x^2+\dfrac{7}{3}x-2\)

d: \(=\dfrac{\left(3x-2\right)\left(3x+2\right)}{3x+2}=3x-2\)

e: \(=\dfrac{2x^4-8x^3-6x^2-5x^3+20x^2+15x+x^2-4x-3}{x^2-4x-3}\)

=2x^2-5x+1

Sách Giáo Khoa
Xem chi tiết
Nguyễn Lê Phước Thịnh
16 tháng 5 2022 lúc 22:41

a: \(=\dfrac{x^4-6x^3+12x^2-14x+3}{x^2-4x+1}\)

\(=\dfrac{x^4-4x^3+x^2-2x^3+8x^2-2x+3x^2-12x+3}{x^2-4x+1}\)

\(=x^2-2x+3\)

b: \(=\dfrac{x^5-3x^4+5x^3-x^2+3x-5}{x^2-3x+5}=x^2-1\)

c: \(=\dfrac{2x^4-5x^3+2x^2+2x-1}{x^2-x-1}\)

\(=\dfrac{2x^4-2x^3-2x^2-3x^3+3x^2+3x+x^2-x-1}{x^2-x-1}\)

\(=2x^2-3x+1\)

Phương Thảo
Xem chi tiết
Phương Thảo
13 tháng 11 2018 lúc 20:12

Help me !!!!!

Lại Vũ Hoài Thương
13 tháng 11 2018 lúc 20:23

Bài 1:

a) \(\dfrac{15xy}{10x^2y}\)

= \(\dfrac{3.5xy}{2.5xyx}\)

= \(\dfrac{3}{2x}\)

d) \(\dfrac{6x\left(x+5\right)^3}{2x^2\left(x+5\right)}\)

= \(\dfrac{3.2x\left(x+5\right)\left(x+5\right)^2}{x.2x\left(x+5\right)}\)

= \(\dfrac{3\left(x+5\right)^2}{x}\)


Lại Vũ Hoài Thương
13 tháng 11 2018 lúc 20:35

Bài 2:

c) \(\dfrac{9x^2y}{-15x^3y}\)

= -\(\dfrac{3.3x^2y}{5.3x^2yx}\)

= -\(\dfrac{3}{5x}\)

d) \(\dfrac{-15x\left(x-y\right)^2}{6x^2\left(x-y\right)^3}\)

= \(\dfrac{5.3x\left(x-y\right)^2}{2x.3x\left(x-y\right)^2\left(x-y\right)}\)

= \(\dfrac{5}{2x\left(x-y\right)}\)

= \(\dfrac{5}{2x^2-2xy}\)