Cho: \(x\sqrt{1-y^2}+y\sqrt{1-x^2}=1\)
CMR: \(x^2+y^2=1\)
Cho x,y,z>0 và x+y+z=1.CMR:\(\sqrt{x^2+\dfrac{1}{y^2}}+\sqrt{y^2+\dfrac{1}{z^2}}\sqrt{z^2+\dfrac{1}{x^2}}>=\sqrt{82}\)
Cho x,y,z > 0 và \(x+y+z\le\dfrac{3}{2}\). CMR :
\(\sqrt{x^2+\dfrac{1}{x^2}}+\sqrt{y^2+\dfrac{1}{y^2}}+\sqrt{z^2+\dfrac{1}{z^2}}\ge\dfrac{3}{2}\sqrt{17}\)
Cho 2 số thực a, b thỏa mãn xy + \(\sqrt{\left(x^2+1\right)\left(y^2+1\right)}=1\)
CMR: \(x\sqrt{1+y^2}+y\sqrt{1+x^2}=0\)
Cho 3 số dương x,y,z. CMR:\(\dfrac{1}{\sqrt{x}}+\dfrac{1}{\sqrt{y}}+\dfrac{1}{\sqrt{z}}>=3\left(\dfrac{1}{\sqrt{x}+2\sqrt{y}}+\dfrac{1}{\sqrt{y}+2\sqrt{z}}+\dfrac{1}{\sqrt{z}+2\sqrt{x}}\right)\)
Áp dụng BĐT Cauchy-Schwarz ta có:
\(\dfrac{1}{\sqrt{x}+2\sqrt{y}}\le\dfrac{1}{9}\left(\dfrac{1}{\sqrt{x}}+\dfrac{1}{\sqrt{y}}+\dfrac{1}{\sqrt{y}}\right)\)
Tương tự cho 2 BĐT trên ta có:
\(\dfrac{1}{3}VP\le\dfrac{1}{9}\cdot3\left(\dfrac{1}{\sqrt{x}}+\dfrac{1}{\sqrt{y}}+\dfrac{1}{\sqrt{z}}\right)\)
\(=\dfrac{1}{3}\left(\dfrac{1}{\sqrt{x}}+\dfrac{1}{\sqrt{y}}+\dfrac{1}{\sqrt{z}}\right)=\dfrac{1}{3}VT\)
Xảy ra khi \(x=y=z\)
cho \(\left(x+\sqrt{x^2}+1\right)\left(y+\sqrt{y^2}+1\right)=1\)cmr \(x\sqrt{y^2+1}+y\sqrt{x^2+1}=0\)
\(=\left(\left(\sqrt{x}\right)^2+2\cdot\frac{1}{2}x+\left(\frac{1}{2}\right)^2+\frac{3}{4}\right)\left(\left(\sqrt{y}\right)^2+2\cdot\frac{1}{2}y+\left(\frac{1}{2}\right)^2+\frac{3}{4}\right)\)
\(=\left(\left(\sqrt{x}+\frac{1}{2}\right)^2+\frac{3}{4}\right)\left(\left(\sqrt{y}+\frac{1}{2}\right)^2+\frac{3}{4}\right)\)
\(\sqrt{x}>=0\Rightarrow\sqrt{x}+\frac{1}{2}>=\frac{1}{2}\Rightarrow\left(\sqrt{x}+\frac{1}{2}\right)^2>=\left(\frac{1}{2}\right)^2=\frac{1}{4}\)
\(\Rightarrow\left(\sqrt{x}+\frac{1}{2}\right)^2+\frac{3}{4}>=\frac{1}{4}+\frac{3}{4}=1\left(1\right)\)
\(\sqrt{y}>=0\Rightarrow\sqrt{y}+\frac{1}{2}>=\frac{1}{2}\Rightarrow\left(\sqrt{y}+\frac{1}{2}\right)^2>=\left(\frac{1}{2}\right)^2=\frac{1}{4}\)
\(\Rightarrow\left(\sqrt{y}+\frac{1}{2}\right)^2+\frac{3}{4}>=\frac{1}{4}+\frac{3}{4}=1\left(2\right)\)
từ \(\left(1\right)\left(2\right)\Rightarrow\left(\left(\sqrt{x}+\frac{1}{2}\right)^2+\frac{3}{4}\right)\left(\left(\sqrt{y}+\frac{1}{2}\right)^2+\frac{3}{4}\right)>=1\)
\(\Rightarrow\left(x+\sqrt{x^2}+1\right)\left(y+\sqrt{y^2}+1\right)>=1\cdot1=1\)
dấu = xảy ra khi \(x=y=0\)
mà theo giả thiết \(\left(x+\sqrt{x^2}+1\right)\left(y+\sqrt{y^2}+1\right)=1\Rightarrow x=y=0\)
\(\Rightarrow x\sqrt{y^2+1}+y\sqrt{x^2+1}=0\sqrt{y^2+1}+0\sqrt{x^2+1}=0+0=0\)
hình như đề phải là \(\left(x+\sqrt{x}+1\right)\left(y+\sqrt{y}+1\right)\)mới đúng
cho x,y,z>0 và x3+y3+z3=1.
CMR:\(\dfrac{x^2}{\sqrt{1-x^2}}+\dfrac{y^2}{\sqrt{1-y^2}}+\dfrac{z^2}{\sqrt{1-z^2}}\ge2\)
Ta có với x,y,z >0 thì:\(\dfrac{x^2}{\sqrt{1-x^2}}=\dfrac{x^3}{x\sqrt{1-x^2}}\)
Bất đẳng thức Cô si ta có:
\(x\sqrt{1-x^2}\le\dfrac{x^2+1-x^2}{2}=\dfrac{1}{2}\\ \Rightarrow\dfrac{1}{x\sqrt{1-x^2}}\ge2\\ \Rightarrow\dfrac{x^3}{x\sqrt{1-x^2}}\ge2x^3\Leftrightarrow\dfrac{x^2}{\sqrt{1-x^2}}\ge2x^3\)
Tương tự: \(\dfrac{y^2}{\sqrt{1-y^2}}\ge2y^3;\dfrac{z^2}{\sqrt{1-z^2}}\ge2z^3\)
Từ đó ta có:\(\dfrac{x^2}{\sqrt{1-x^2}}+\dfrac{y^2}{\sqrt{1-y^2}}+\dfrac{z^2}{\sqrt{1-z^2}}\ge2\left(x^3+y^3+z^3\right)=2\left(dpcm\right)\)
Cho các số thực dương x, y, z thỏa mãn \(x+y+z=2020xyz\) . Cmr \(\dfrac{x^2+1+\sqrt{2020x^2+1}}{x}+\dfrac{y^2+1+\sqrt{2020y^2+1}}{y}+\dfrac{z^2+1+\sqrt{2020z^2+1}}{z}\le2020.2021xyz\)
\(\left(x;y;z\right)=\left(\dfrac{1}{a};\dfrac{1}{b};\dfrac{1}{c}\right)\Rightarrow ab+bc+ca=2020\)
BĐT trở thành:
\(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}+a+b+c+\sqrt{2020+a^2}+\sqrt{2020+b^2}+\sqrt{2020+c^2}\le\dfrac{2020.2021}{abc}\)
\(\Leftrightarrow\dfrac{ab+bc+ca}{abc}+a+b+c+\sqrt{2020+a^2}+\sqrt{2020+b^2}+\sqrt{2020+c^2}\le\dfrac{2020.2021}{abc}\)
\(\Leftrightarrow a+b+c+\sqrt{2020+a^2}+\sqrt{2020+b^2}+\sqrt{2020+c^2}\le\dfrac{2020^2}{abc}\)
Ta có: \(\sqrt{2020+a^2}=\sqrt{ab+bc+ca+a^2}=\sqrt{\left(a+b\right)\left(a+c\right)}\le\dfrac{1}{2}\left(2a+b+c\right)\)
Tương tự:...
\(\Rightarrow\sqrt{2020+a^2}+\sqrt{2020+b^2}+\sqrt{2020+c^2}\le2\left(a+b+c\right)\)
\(\Rightarrow a+b+c+\sqrt{2020+a^2}+\sqrt{2020+b^2}+\sqrt{2020+c^2}\le3\left(a+b+c\right)\)
Nên ta chỉ cần chứng minh:
\(3\left(a+b+c\right)\le\dfrac{2020^2}{abc}=\dfrac{\left(ab+bc+ca\right)^2}{abc}\)
\(\Leftrightarrow\left(ab+bc+ca\right)^2\ge3abc\left(a+b+c\right)\) (hiển nhiên đúng)
Dấu "=" xảy ra khi \(a=b=c\) hay \(x=y=z\)
Cho 3 số dương x,y,z thỏa mãn x + y + z = xyz. Cmr:
\(A=\frac{\sqrt{\left(1+y^2\right)\left(1+z^2\right)}-\sqrt{1+y^2}-\sqrt{1+z^2}}{yz}+\frac{\sqrt{\left(1+z^2\right)\left(1+x^2\right)}-\sqrt{1+x^2}-\sqrt{1+z^2}}{xz}+\frac{\sqrt{\left(1+x^2\right)\left(1+y^2\right)}-\sqrt{1+x^2}-\sqrt{1+y^2}}{xy}=0\)
Bạn tham khảo tại đây:
Cho x,y biết \(\left(x+\sqrt{1+y^2}\right)\left(y+\sqrt{1+x^2}\right)=1\)
CMR \(x\left(\sqrt{1+x^2}\right)\left(y+\sqrt{1+y^2}\right)=1\)
Cho x,y,x là các sô thực dương. CMR \(\dfrac{2\sqrt{x}}{x^3+y^2}+\dfrac{2\sqrt{y}}{y^3+z^2}+\dfrac{2\sqrt{z}}{z^3+x^2}\le\dfrac{1}{x^2}+\dfrac{1}{y^2}+\dfrac{1}{z^2}\)
Áp dụng bất đẳng thức Côsi cho các số dương $x, y, z$, ta được:$x^{3}+y^{2} \geqslant 2 \sqrt{x^{3} \cdot y^{2}}=2 x y \cdot \sqrt{x}$$y^{3}+z^{2} \geqslant 2 \sqrt{y^{3} \cdot z^{2}}=2 y z \cdot \sqrt{y}$$z^{3}+x^{2} \geqslant 2 \sqrt{z^{3} \cdot x^{2}}=2 z x \cdot \sqrt{z}$Khi đó BĐT đã cho trở thành:$\dfrac{2 \sqrt{x}}{x^{3}+y^{2}}+\dfrac{2 \sqrt{y}}{y^{3}+z^{2}}+\dfrac{2 \sqrt{z}}{z^{3}+x^{2}} \leqslant \dfrac{2 \sqrt{x}}{2 x y \sqrt{x}}+\dfrac{2 \sqrt{y}}{2 y z \sqrt{y}}+\dfrac{2 \sqrt{z}}{2 z x \sqrt{z}}=\dfrac{1}{x y}+\dfrac{1}{y z}+\dfrac{1}{z x} (1)$Mặt khác ta có:$\dfrac{1}{x^{2}}+\dfrac{1}{y^{2}} \geqslant \dfrac{2}{x y} \Rightarrow \dfrac{1}{x y} \leqslant \dfrac{1}{2}\left(\dfrac{1}{x^{2}}+\dfrac{1}{y^{2}}\right)$
CMTT: $\dfrac{1}{y z} \leq \dfrac{1}{2}\left(\dfrac{1}{y^{2}}+\dfrac{1}{z^{2}}\right) ; \dfrac{1}{z x} \leqslant \dfrac{1}{2}\left(\dfrac{1}{z^{2}}+\dfrac{1}{x^{2}}\right)$Suy ra: $\dfrac{1}{x y}+\dfrac{1}{y z}+\dfrac{1}{z x} \leqslant \dfrac{1}{x^{2}}+\dfrac{1}{y^{2}}+\dfrac{1}{z^{2}}(2)$Từ $(1)$ và $(2)$ ta được: $\dfrac{2 \sqrt{x}}{x^{3}+y^{2}}+\dfrac{2 \sqrt{y}}{y^{3}+z^{2}}+\dfrac{2 \sqrt{z}}{z^{3}+x^{2}} \leqslant \dfrac{1}{x^{2}}+\dfrac{1}{y^{2}}+\dfrac{1}{z^{2}}$Dấu " $="$ xảy ra $\Leftrightarrow x=y=z=1$
Áp dụng bất đẳng thức Côsi cho các số dương $x, y, z$, ta được:
$x^{3}+y^{2} \geqslant 2 \sqrt{x^{3} \cdot y^{2}}=2 x y \cdot \sqrt{x}$
$y^{3}+z^{2} \geqslant 2 \sqrt{y^{3} \cdot z^{2}}=2 y z \cdot \sqrt{y}$
$z^{3}+x^{2} \geqslant 2 \sqrt{z^{3} \cdot x^{2}}=2 z x \cdot \sqrt{z}$
Khi đó BĐT đã cho trở thành:
$\dfrac{2 \sqrt{x}}{x^{3}+y^{2}}+\dfrac{2 \sqrt{y}}{y^{3}+z^{2}}+\dfrac{2 \sqrt{z}}{z^{3}+x^{2}} \leqslant \dfrac{2 \sqrt{x}}{2 x y \sqrt{x}}+\dfrac{2 \sqrt{y}}{2 y z \sqrt{y}}+\dfrac{2 \sqrt{z}}{2 z x \sqrt{z}}=\dfrac{1}{x y}+\dfrac{1}{y z}+\dfrac{1}{z x} (1)$
Mặt khác ta có:
$\dfrac{1}{x^{2}}+\dfrac{1}{y^{2}} \geqslant \dfrac{2}{x y} \Rightarrow \dfrac{1}{x y} \leqslant \dfrac{1}{2}\left(\dfrac{1}{x^{2}}+\dfrac{1}{y^{2}}\right)$
CMTT: $\dfrac{1}{y z} \leq \dfrac{1}{2}\left(\dfrac{1}{y^{2}}+\dfrac{1}{z^{2}}\right) ; \dfrac{1}{z x} \leqslant \dfrac{1}{2}\left(\dfrac{1}{z^{2}}+\dfrac{1}{x^{2}}\right)$
Suy ra: $\dfrac{1}{x y}+\dfrac{1}{y z}+\dfrac{1}{z x} \leqslant \dfrac{1}{x^{2}}+\dfrac{1}{y^{2}}+\dfrac{1}{z^{2}}(2)$
Từ $(1)$ và $(2)$ ta được: $\dfrac{2 \sqrt{x}}{x^{3}+y^{2}}+\dfrac{2 \sqrt{y}}{y^{3}+z^{2}}+\dfrac{2 \sqrt{z}}{z^{3}+x^{2}} \leqslant \dfrac{1}{x^{2}}+\dfrac{1}{y^{2}}+\dfrac{1}{z^{2}}$
Dấu " $="$ xảy ra $\Leftrightarrow x=y=z=1$