Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
28 tháng 6 2017 lúc 14:55

Biến đổi VP

=> VT = VP

=> Đpcm

PH_gaming
Xem chi tiết
M r . V ô D a n h
16 tháng 8 2021 lúc 8:42

2

Ta có:

VP=(a+b)3−3ab(a+b)VP=(a+b)3-3ab(a+b)

     =a3+b3+3ab(a+b)−3ab(a+b)=a3+b3+3ab(a+b)-3ab(a+b)

     =a3+b3=VT(dpcm)

Châu Huỳnh
16 tháng 8 2021 lúc 8:45

1, \(VT=a^2+b^2=a^2+b^2+2ab-2ab=\left(a+b\right)^2-2ab=VP\left(đpcm\right)\)

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
21 tháng 11 2018 lúc 18:17

a) HS tự chứng minh.

b) Áp dụng tính được:

i) 9261;                        ii) 7880599;         

iii) 5840;                      iv) 12140.

Hoàng Hưng Đạo
Xem chi tiết
zanggshangg
14 tháng 5 2021 lúc 21:04

a )

`VP= (a+b)^3-3ab(a+b)`

     `=a^3+3a^2b+3ab^2+b^3-3a^2b-3ab^2`

     `=a^3+b^3 =VT (đpcm)`

b) 

b) Ta có

`VT=a3+b3+c3−3abc`

     `=(a+b)3−3ab(a+b)+c3−3abc`

     `=[(a+b)3+c3]−3ab(a+b+c)`

     `=(a+b+c)[(a+b)2+c2−c(a+b)]−3ab(a+b+c)`

     `=(a+b+c)(a2+b2+2ab+c2−ac−bc−3ab)`

    `=(a+b+c)(a2+b2+c2−ab−bc−ca)=VP`

  
zanggshangg
14 tháng 5 2021 lúc 21:09

 

a) Ta có:

`VP= (a+b)^3-3ab(a+b)`

     `=a^3 + b^3+3ab ( a + b )- 3ab ( a + b )`

     `=a^3 + b^3=VT(dpcm)`

b) Ta có

`VT=a^3+b^3+c^3−3abc`

     `=(a+b)^3−3ab(a+b)+c^3−3abc`

     `=[(a+b)^3+c^3]−3ab(a+b+c)`

     `=(a+b+c)[(a+b)^2+c^2−c(a+b)]−3ab(a+b+c)`

     `=(a+b+c)(a^2+b^2+2ab+c^2−ac−bc−3ab)`

    `=(a+b+c)(a^2+b^2+c^2−ab−bc−ca)=VP`

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
8 tháng 3 2017 lúc 3:50

Biến đổi vế phải ta được:

(a – b)3 + 3ab(a – b)

= a3 – 3a2b + 3ab2 – b3 + 3a2b – 3ab2

= a3 – b3

Vậy a3 – b3 = (a – b)3 + 3ab(a – b)

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
19 tháng 7 2018 lúc 3:11

Biến đổi vế phải ta được:

(a + b)3 – 3ab(a + b)

= a3 + 3a2b + 3ab2 + b3 – 3a2b – 3ab2

= a3 + b3

Vậy a3 + b3 = (a + b)3 – 3ab(a + b)

Đào Phúc Việt
Xem chi tiết
Nguyễn Lê Phước Thịnh
5 tháng 10 2021 lúc 21:24

\(\left(a+b\right)^3-3ab\left(a+b\right)\)

\(=\left(a+b\right)\left(a^2-ab+b^2\right)\)

\(=a^3+b^3\)

Akai Haruma
5 tháng 10 2021 lúc 21:26

Lời giải:

$(a+b)^3-3ab(a+b)$

$=a^3+3a^2b+3ab^2+b^3-(3a^2b+3ab^2)$

$=a^3+b^3$
Ta có đpcm.

Đào Phúc Việt
Xem chi tiết
Nguyễn Hoàng Minh
5 tháng 10 2021 lúc 20:36

\(VP=\left(a+b\right)^3-3ab\left(a+b\right)=a^3+3a^2b+3ab^2+b^3-3a^2b-3ab^2=a^3+b^3=VT\)

Lấp La Lấp Lánh
5 tháng 10 2021 lúc 20:36

\(\left(a+b\right)^3-3ab\left(a+b\right)=a^3+b^3+3a^2b+3ab^2-3a^2b-3ab^2=a^3+b^3\left(đpcm\right)\)

Nguyễn Lê Phước Thịnh
5 tháng 10 2021 lúc 20:41

\(\left(a+b\right)^3-3ab\left(a+b\right)\)

\(=\left(a+b\right)\left(a^2+2ab+b^2-3ba\right)\)

\(=a^3+b^3\)

chuche
Xem chi tiết