Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Ngô Hoài Thanh
Xem chi tiết
alibaba nguyễn
18 tháng 8 2016 lúc 16:26

Ta có M= 8 + 2√[(x - 1)(9 - x)] <= 8 + (x - 1) + (9 - x) = 8 + 8 = 16 

=> M <= 4 đạt GTLN tại x = 5

💥Hoàng Thị Diệu Thùy 💦
Xem chi tiết
Kinder
Xem chi tiết
Edogawa Conan
30 tháng 7 2021 lúc 8:38

Max E=10

Lizy
Xem chi tiết
Nguyễn Việt Lâm
22 tháng 1 2024 lúc 21:37

\(P=\dfrac{\sqrt{x}-3+2}{\sqrt{x}-3}=1+\dfrac{2}{\sqrt{x}-3}\)

P lớn nhất khi \(\dfrac{2}{\sqrt{x}-3}\) lớn nhất

\(\Rightarrow\sqrt{x}-3\) là số dương nhỏ nhất

\(\Rightarrow x\) là số nguyên dương nhỏ nhất thỏa mãn \(\sqrt{x}-3\) dương

\(\sqrt{x}-3>0\Rightarrow x>9\)

\(\Rightarrow x_{min}=10\)

Khi đó \(P_{max}=\dfrac{\sqrt{10}-1}{\sqrt{10}-3}\)

Kunzy Nguyễn
Xem chi tiết
Tạ Duy Phương
18 tháng 10 2015 lúc 12:46

ĐKXĐ: \(x\ge0\).  Ta có: 

\(P=\frac{\sqrt{x}-1}{\sqrt{x}}-9\sqrt{x}=1-\frac{1}{\sqrt{x}}-9\sqrt{x}=1-\left(\frac{1}{\sqrt{x}}+9\sqrt{x}\right)\)

Để P đạt GTLN thì \(\frac{1}{\sqrt{x}}+9\sqrt{x}\) đạt GTNN. Áp dụng BĐT Cô-si ta có:

\(\frac{1}{\sqrt{x}}+9\sqrt{x}\ge2\sqrt{\frac{1}{\sqrt{x}}.9\sqrt{x}}=6\Rightarrow P\le1-6=-5\)

Xảy ra đẳng thức khi và chỉ khi \(\frac{1}{\sqrt{x}}=9\sqrt{x}\Leftrightarrow9x=1\Leftrightarrow x=\frac{1}{9}\)  (thỏa mãn) 

Vậy max P = -5 khi và chỉ khi x = 1/9

Trần Đức Thắng
18 tháng 10 2015 lúc 12:52

\(P=1-\frac{1}{\sqrt{x}}-9\sqrt{x}=1-\left(\frac{1}{\sqrt{x}}+9\sqrt{x}\right)\le1-2\sqrt{\frac{1}{\sqrt{x}}\cdot9\sqrt{x}}=1-6=-5\)

Vậy MAx P = -5 tại x = 1/9 

Quân
Xem chi tiết
Hoàng Lê Bảo Ngọc
17 tháng 8 2016 lúc 18:36

Nhận xét : A > 0

Áp dụng bđt Bunhiacopxki , ta có : 

\(A^2=\left(1.\sqrt{x-1}+1.\sqrt{9-x}\right)^2\le\left(1^2+1^2\right)\left(x-1+9-x\right)\)

\(\Rightarrow A^2\le16\Rightarrow A\le4\)

Suy ra Max A = 4 <=> \(\begin{cases}1\le x\le9\\\sqrt{x-1}=\sqrt{9-x}\end{cases}\) \(\Leftrightarrow x=5\)

 

Lightning Farron
17 tháng 8 2016 lúc 18:56

\(A^2=\left(x-1\right)+\left(9-x\right)+2\sqrt{\left(x-1\right)\left(9-x\right)}\)

\(=8+2\sqrt{\left(x-1\right)\left(9-x\right)}\).Dùng BĐT cô-si

\(=8+2\sqrt{\left(x-1\right)\left(9-x\right)}\le8+\left(x-1\right)+\left(9-x\right)=16\)

\(\Rightarrow A^2\le16\Leftrightarrow A\le4\)

Dấu = khi \(\begin{cases}1\le x\le9\\\sqrt{x-1}=\sqrt{9-x}\end{cases}\)\(\Leftrightarrow x=5\)

Vậy MaxA=4 khi x=5

Nguyễn Minh Tuấn
Xem chi tiết
:vvv
Xem chi tiết
missing you =
9 tháng 10 2021 lúc 21:14

\(\forall x\in R\Rightarrow A=\dfrac{\sqrt{x}}{x-2\sqrt{x}+9}\Leftrightarrow A\left(x-2\sqrt{x}+9\right)=\sqrt{x}\)

\(\Leftrightarrow Ax-2A\sqrt{x}-\sqrt{x}+9A=0\)

\(\Leftrightarrow A\sqrt{x}^2-\sqrt{x}\left(2A+1\right)+9A=0\)

\(\Rightarrow\Delta\ge0\Rightarrow\left(2A+1\right)^2-36A^2=-32A^2+4A+1\ge0\Rightarrow-\dfrac{1}{8}\le A\le\dfrac{1}{4}\Rightarrow A\le\dfrac{1}{4}\Rightarrow MaxA=\dfrac{1}{4}\)

\(dấu"="\) \(xảy\) \(ra\Leftrightarrow x=9\)

Herimone
Xem chi tiết
Akai Haruma
7 tháng 8 2021 lúc 18:56

Lời giải:
a.

Áp dụng BĐT Bunhiacopxky:

$A^2=(\sqrt{x-1}+\sqrt{9-x})^2\leq (x-1+9-x)(1+1)=16$

$\Rightarrow A\leq 4$

Vậy $A_{\max}=4$. Giá trị này đạt tại $x=5$

b.

$A=\frac{3(\sqrt{x}+2)+5}{\sqrt{x}+2}=3+\frac{5}{\sqrt{x}+2}$

Để $A$ nguyên thì $\frac{5}{\sqrt{x}+2}=m$ với $m$ nguyên dương

$\Leftrightarrow \sqrt{x}+2=\frac{5}{m}$

$\sqrt{x}=\frac{5-2m}{m}$

Vì $\sqrt{x}\geq 0$ nên $\frac{5-2m}{m}\geq 0$

Mà $m$ nguyên dương nên $5-2m\geq 0$

$\Leftrightarrow m\leq 2,5$. 

$\Rightarrow m=1; 2$

$\Rightarrow x=9; x=\frac{1}{4}$