Rút gọn:A=1+2+22+...+2100
1. Tính rồi rút gọn:
a) (x - 7)(x + 7) - x^2
2. Tìm x:
x(x - 4) - x^2 + 8 = 0
Bài 2:
Ta có: \(x\left(x-4\right)-x^2+8=0\)
\(\Leftrightarrow x^2-4x-x^2+8=0\)
\(\Leftrightarrow-4x=-8\)
hay x=2
1)=x2-49-x2
=-49
2)=>x2-4x-x2+8=0
=>-4x+8=0
=>-4x=-8
=>x=2
Rút gọn:
A = \(\sqrt{\left(2\sqrt{3}-3\sqrt{2}\right)^2}+\sqrt{13-4\sqrt{3}}-\sqrt{22+12\sqrt{2}}\)
\(A=\sqrt{\left(2\sqrt{3}-3\sqrt{2}\right)^2}+\sqrt{13-4\sqrt{3}}-\sqrt{22+12\sqrt{2}}\)
\(=\left|2\sqrt{3}-3\sqrt{2}\right|+\sqrt{\left(2\sqrt{3}\right)^2-2.2\sqrt{3}+\sqrt{1^2}}-\sqrt{\left(3\sqrt{2}\right)^2+2.2.3\sqrt{2}+2^2}\)
\(=-2\sqrt{3}+3\sqrt{2}+\sqrt{\left(2\sqrt{3}-1\right)^2}-\sqrt{\left(3\sqrt{2}+2\right)^2}\)
\(=-2\sqrt{3}+3\sqrt{2}+\left|2\sqrt{3}-1\right|-\left|3\sqrt{2}+2\right|\)
\(=-2\sqrt{3}+3\sqrt{2}+2\sqrt{3}-1-3\sqrt{2}-2\)
\(=-3\)
\(A=3\sqrt{2}-2\sqrt{3}+2\sqrt{3}-1-3\sqrt{2}-2=-3\)
Bài 1: Rút gọn:
A = \(\dfrac{x}{x-2}+\dfrac{x^2+x-2}{4-x^2}\)
\(A=\dfrac{x}{x-2}-\dfrac{x^2+x-2}{x^2-4}=\dfrac{x^2+2x-x^2-x+2}{\left(x-2\right)\left(x+2\right)}=\dfrac{x+2}{\left(x-2\right)\left(x+2\right)}=\dfrac{1}{x-2}\)
\(A=\dfrac{x}{x-2}+\dfrac{x^2+x-2}{4-x^2}\left(x\ne\pm2\right).\)
\(A=\dfrac{x}{x-2}-\dfrac{\left(x-1\right)\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}=\dfrac{x}{x-2}-\dfrac{x-1}{x-2}=\dfrac{x-x+1}{x-2}=\dfrac{1}{x-2.}\)
A= \(\dfrac{x}{x-2}+\dfrac{x^2+x-2}{4-x^2}=\dfrac{-x\left(2+x\right)}{\left(2-x\right)\left(2+x\right)}+\dfrac{x^2+x-2}{\left(2-x\right)\left(2+x\right)}=\dfrac{-2x-x^2+x^2+x-2}{\left(2-x\right)\left(2+x\right)}=\dfrac{-x-2}{\left(2-x\right)\left(2-x\right)}=\dfrac{-1\left(x+2\right)}{\left(2-x\right)\left(2+x\right)}=\dfrac{-1}{2-x}\)
Rút gọn mỗi biểu thức sau :
câu a) A=1+3+3^2+3^3+.........................+3^99 +3^100
câu b) B=2100-299+298-297+....-23+22-2+1
mấy cái (/ ) là luỹ thừa
giúp mình với mình đang cần ![]()
Rút gọn:A=1+5+5^2+5^3+...5^2008+5^200
Rút gọn:
a.(x2-2)(-x+3)
\(\left(x^2-2\right)\left(-x+3\right)\)
\(=-x^3+3x^2+2x-6\)
Rút gọn:
a. (1-cos)(1+cos)
b. tan^2 (2cos^2 +sin^2 -1)
c. sin^4 +cos^4 + 2cos^2 * sin^2
a: \(\left(1-cosx\right)\left(1+cosx\right)=1^2-cos^2x=sin^2x\)
b: \(tan^2x\left(2cos^2x+sin^2x-1\right)\)
\(=tan^2x\left(1-1+cos^2x\right)\)
\(=\dfrac{sin^2x}{cos^2x}\cdot cos^2x=sin^2x\)
c: \(sin^4x+cos^4x+2\cdot cos^2x\cdot sin^2x\)
\(=\left(sin^2x+cos^2x\right)^2\)
\(=1^2=1\)
Rút gọn:
A=\(\dfrac{3-\sqrt{3} }{\sqrt{3}-1 } \)
\(A=\dfrac{\sqrt{3}\left(\sqrt{3}-1\right)}{\sqrt{3}-1}=\sqrt{3}\)
1.So sánh:
a, 2 mũ 6 và 6 mũ 2
b, 73+1 và 7 và 73 + 1
c, 1314 - 1313 và 1315 - 1314
d, 32+n và 23+n (n e N *)
2. Rút gọn mỗi biểu thức sau:
a) A= 1+3+32+33+.....+399+3100
b) B= 2100-299+298-297+....-23+22-2+1