Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Quốc Cường
Xem chi tiết
títtt
Xem chi tiết
Nguyễn Lê Phước Thịnh
20 tháng 1 2024 lúc 21:15

a: \(log\left(x-2\right)< 3\)

=>\(\left\{{}\begin{matrix}x-2>0\\log\left(x-2\right)< log9\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x-2>0\\x-2< 9\end{matrix}\right.\Leftrightarrow2< x< 11\)

b: \(log_2\left(2x-1\right)>3\)

=>\(\left\{{}\begin{matrix}2x-1>0\\log_2\left(2x-1\right)>log_29\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}2x-1>0\\2x-1>9\end{matrix}\right.\Leftrightarrow2x-1>9\)

=>2x>10

=>x>5

c: \(log_3\left(-x-1\right)< =2\)

=>\(\left\{{}\begin{matrix}-x-1>0\\log_3\left(-x-1\right)< =log_39\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}-x-1>0\\-x-1< =9\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-x>1\\-x< =10\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x< -1\\x>=-10\end{matrix}\right.\Leftrightarrow-10< =x< -1\)

d: \(log_2\left(2x-3\right)>=2\)

=>\(\left\{{}\begin{matrix}2x-3>0\\log_2\left(2x-3\right)>=log_24\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}2x-3>0\\2x-3>=4\end{matrix}\right.\)

=>2x-3>=4

=>2x>=7

=>\(x>=\dfrac{7}{2}\)

e: \(log_3\left(2x-7\right)>2\)

=>\(\left\{{}\begin{matrix}2x-7>0\\log_3\left(2x-7\right)>log_39\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x>\dfrac{7}{2}\\2x-7>9\end{matrix}\right.\)

=>2x-7>9

=>2x>16

=>x>8

Nguyễn Việt Lâm
20 tháng 1 2024 lúc 21:16

a.

\(log\left(x-2\right)< 3\)

\(\Leftrightarrow\left\{{}\begin{matrix}x-2>0\\x-2< 10^3\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x>2\\x< 1002\end{matrix}\right.\) \(\Rightarrow2< x< 1002\)

b.

\(log_2\left(2x-1\right)>3\Leftrightarrow\left\{{}\begin{matrix}2x-1>0\\2x-1>2^3\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x>\dfrac{1}{2}\\x>\dfrac{9}{2}\end{matrix}\right.\) \(\Rightarrow x>\dfrac{9}{2}\)

c.

\(log_3\left(-x-1\right)\le2\Rightarrow\left\{{}\begin{matrix}-x-1>0\\-x-1\le3^2\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x< -1\\x\ge-10\end{matrix}\right.\) \(\Rightarrow-10\le x< -1\)

d.

\(log_2\left(2x-3\right)\ge2\Leftrightarrow\left\{{}\begin{matrix}2x-3>0\\2x-3\ge2^2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\ge\dfrac{3}{2}\\x>\dfrac{7}{2}\end{matrix}\right.\) \(\Rightarrow x>\dfrac{7}{2}\)

e,

\(log_3\left(2x-7\right)>2\Leftrightarrow\left\{{}\begin{matrix}2x-7>0\\2x-7>3^2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x>\dfrac{7}{2}\\x>8\end{matrix}\right.\) \(\Rightarrow x>8\)

Akai Haruma
20 tháng 1 2024 lúc 21:16

Lời giải:
a. ĐK: $x>2$
$\log(x-2)<3$

$\Leftrightarrow x-2< 10^3$

$\Leftrightarrow x< 1002$

Vậy $2< x< 1002$
b.  ĐK: $x> \frac{1}{2}$

$\log_2(2x-1)>3$

$\Leftrightarrow 2x-1> 2^3$

$\Leftrightarrow 2x> 9$

$\Leftrightarrow x> \frac{9}{2}$

Vậy $x> \frac{9}{2}$

c. ĐK: $x< -1$

$\log_3(-x-1)\leq 2$

$\Leftrightarrow -x-1\leq 3^2=9$

$\Leftrightarrow x+1\geq -9$

$\Leftrightarrow x\geq -10$

Vậy $-10\leq x< -1$

d. ĐK: $x> \frac{3}{2}$

$\log_2(2x-3)\geq 2$

$\Leftrightarrow 2x-3\geq 2^2=4$

$\Leftrightarrow x\geq \frac{7}{2}$

Vậy $x\geq \frac{7}{2}$

e. ĐK: $x> \frac{7}{2}$

$\log_3(2x-7)>2$
$\Leftrightarrow 2x-7> 3^2=9$
$\Leftrightarrow x> 8$

Vậy $x>8$

CAO ĐỨC TÂM
Xem chi tiết
Nguyễn Việt Lâm
11 tháng 12 2021 lúc 22:35

Đặt \(\sqrt{x^2-5x+5}=t>0\)

\(\Rightarrow log_2\left(t+1\right)+log_3\left(t^2+2\right)-2=0\)

Nhận thấy \(t=1\) là 1 nghiệm của pt

Xét hàm \(f\left(t\right)=log_2\left(t+1\right)+log_3\left(t^2+2\right)-2\)

\(f'\left(t\right)=\dfrac{1}{\left(t+1\right)ln2}+\dfrac{2t}{\left(t^2+2\right)ln3}>0\Rightarrow f\left(t\right)\) đồng biến

\(\Rightarrow f\left(t\right)\) có tối đa 1 nghiệm

\(\Rightarrow t=1\) là nghiệm duy nhất của pt

\(\Rightarrow\sqrt{x^2-5x+5}=1\Rightarrow\left[{}\begin{matrix}x=1\\x=4\end{matrix}\right.\)

títtt
Xem chi tiết
Nguyễn Lê Phước Thịnh
20 tháng 1 2024 lúc 21:18

a: \(log\left(x-5\right)< 2\)

=>\(\left\{{}\begin{matrix}x-5>0\\log\left(x-5\right)< log4\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x-5>0\\x-5< 4\end{matrix}\right.\Leftrightarrow5< x< 9\)

b: \(log_2\left(2x-3\right)>4\)

=>\(log_2\left(2x-3\right)>log_216\)

=>\(\left\{{}\begin{matrix}2x-3>0\\2x-3>16\end{matrix}\right.\)

=>2x-3>16

=>2x>19

=>\(x>\dfrac{19}{2}\)

c: \(log_3\left(2x+5\right)< =3\)

=>\(log_3\left(2x+5\right)< =log_327\)

=>\(\left\{{}\begin{matrix}2x+5>0\\2x+5< =27\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x>-\dfrac{5}{2}\\x< =11\end{matrix}\right.\)

=>\(-\dfrac{5}{2}< x< =11\)

d: \(log_4\left(4x-5\right)>=2\)

=>\(log_4\left(4x-5\right)>=log_416\)

=>4x-5>=16 và 4x-5>0

=>4x>=21 và 4x>5

=>4x>=21

=>\(x>=\dfrac{21}{4}\)

e: \(log_3\left(1-3x\right)>3\)

=>\(log_3\left(1-3x\right)>log_327\)

=>\(\left\{{}\begin{matrix}1-3x>0\\1-3x>27\end{matrix}\right.\)

=>1-3x>27

=>\(-3x>26\)

=>\(x< -\dfrac{26}{3}\)

Thái Hưng Mai Thanh
Xem chi tiết
Trên con đường thành côn...
10 tháng 11 2023 lúc 20:36

\(ĐKXĐ:x>2\)

BPT đã cho tương đương với:

\(2log_2\sqrt{x+1}+log_2\left(x-2\right)\le2\)

\(\Leftrightarrow log_2\left(x+1\right)+log_2\left(x-2\right)\le2\)

\(\Leftrightarrow log_2\left(x^2-x-2\right)\le2\)\(\Leftrightarrow0< x^2-x-2\le2^2\)\(\Leftrightarrow\left[{}\begin{matrix}2< x\le3\\-2\le x< -1\left(l\right)\end{matrix}\right.\)

Vậy tổng các nghiệm nguyên của bpt là 3

Sách Giáo Khoa
Xem chi tiết
Annie Scarlet
Xem chi tiết
Nguyễn Việt Lâm
5 tháng 1 2021 lúc 22:41

Có lẽ đây là 1 đề bài ko chính xác

- Với \(\left[{}\begin{matrix}x\le-1\\x\ge4\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}VP>0\\VT\le0\end{matrix}\right.\) BPT luôn đúng

- Với \(-1< x< 4\)

\(VT\le\dfrac{1}{4}\left(x+1+4-x\right)^2=\dfrac{25}{4}\)

\(VP=5\sqrt{\left(x+\dfrac{5}{2}\right)^2+\dfrac{87}{4}}\ge5.\sqrt{\dfrac{87}{4}}>\dfrac{25}{4}>VT\)

Vậy BPT luôn đúng hay tập nghiệm của BPT đã cho là R

Thảo Nguyên
Xem chi tiết
Kyun Diệp
Xem chi tiết
Nguyễn Ngọc Lộc
1 tháng 5 2021 lúc 18:26

a, ĐKXĐ : \(D=R\)

BPT \(\Leftrightarrow x^2+5x+4< 5\sqrt{x^2+5x+4+24}\)

Đặt \(x^2+5x+4=a\left(a\ge-\dfrac{9}{4}\right)\)

BPTTT : \(5\sqrt{a+24}>a\)

\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}a+24\ge0\\a< 0\end{matrix}\right.\\\left\{{}\begin{matrix}a\ge0\\25\left(a+24\right)>a^2\end{matrix}\right.\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}-24\le a< 0\\\left\{{}\begin{matrix}a^2-25a-600< 0\\a\ge0\end{matrix}\right.\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}-24\le a< 0\\0\le a< 40\end{matrix}\right.\)

\(\Leftrightarrow-24\le a< 40\)

- Thay lại a vào ta được : \(\left\{{}\begin{matrix}x^2+5x-36< 0\\x^2+5x+28\ge0\end{matrix}\right.\)

\(\Leftrightarrow-9< x< 4\)

Vậy ....

 

Nguyễn Ngọc Lộc
1 tháng 5 2021 lúc 18:37

b, ĐKXĐ : \(x>0\)

BĐT \(\Leftrightarrow2\left(\sqrt{x}+\dfrac{1}{2\sqrt{x}}\right)< x+\dfrac{1}{4x}+1\)

- Đặt \(\sqrt{x}+\dfrac{1}{2\sqrt{x}}=a\left(a\ge\sqrt{2}\right)\)

\(\Leftrightarrow a^2=x+\dfrac{1}{4x}+1\)

BPTTT : \(2a\le a^2\)

\(\Leftrightarrow\left[{}\begin{matrix}a\le0\\a\ge2\end{matrix}\right.\)

\(\Leftrightarrow a\ge2\)

\(\Leftrightarrow a^2\ge4\)

- Thay a vào lại BPT ta được : \(x+\dfrac{1}{4x}-3\ge0\)

\(\Leftrightarrow4x^2-12x+1\ge0\)

\(\Leftrightarrow x=(0;\dfrac{3-2\sqrt{2}}{2}]\cup[\dfrac{3+2\sqrt{2}}{2};+\infty)\)

Vậy ...