Chương 2: HÀM SỐ LŨY THỪA. HÀM SỐ MŨ VÀ HÀM SỐ LÔGARIT

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Trần Minh Ngọc

Giải bất phương trình :

\(\log_2\left(\sqrt{x^2-5x+5}+1\right)+\log_3\left(x^2-5x+7\right)\le2\)

Nguyễn Trọng Nghĩa
30 tháng 3 2016 lúc 9:34

Đặt :

\(t=\sqrt{x^2-5x+5}\left(t\ge0\right)\)

Bất phương trình trở thành :

\(\log_2\left(t+1\right)+\log_3\left(t^2+2\right)\le2\)

Xét \(f\left(t\right)=\log_2\left(t+1\right)+\log_3\left(t^2+2\right)\) trên \(\left(0;+\infty\right)\)

Do \(t\ge0\) nên \(\log_2\left(t+1\right)\) và \(\log_3\left(t^2+2\right)\) đều là các hàm số đồng biến, do đó f(t) đồng biến trên  \(\left(0;+\infty\right)\)

Lại có f(1)=2, từ đó suy ra \(t\le1\)Giải ra được :\(1\le x\)\(\le\frac{5-\sqrt{5}}{2}\) hoặc \(\frac{5-\sqrt{5}}{2}\le x\) \(\le4\)

Các câu hỏi tương tự
shayuri.shayuri.shayuri
Xem chi tiết
Lê Thanh Phương
Xem chi tiết
Võ Thị Thùy Dung
Xem chi tiết
Nguyễn Minh Nguyệt
Xem chi tiết
Tường Nguyễn Thế
Xem chi tiết
Cao Thị Hồng Vân
Xem chi tiết
Nguyễn Đức Đạt
Xem chi tiết
Đào Thị Hương Lý
Xem chi tiết
Nguyễn Quốc Cường
Xem chi tiết