Giải bất phương trình sau :
\(\log_2\left(\sqrt{x^2-5x+5}+1\right)+\log_3\left(x^2-5x+7\right)\le2\)
Giải bất phương trình :
\(\log_2\left(\sqrt{x^2-5x+5}+1\right)+\log_3\left(x^2-5x+7\right)\le2\)
Đặt :
\(t=\sqrt{x^2-5x+5}\left(t\ge0\right)\)
Bất phương trình trở thành :
\(\log_2\left(t+1\right)+\log_3\left(t^2+2\right)\le2\)
Xét \(f\left(t\right)=\log_2\left(t+1\right)+\log_3\left(t^2+2\right)\) trên \(\left(0;+\infty\right)\)
Do \(t\ge0\) nên \(\log_2\left(t+1\right)\) và \(\log_3\left(t^2+2\right)\) đều là các hàm số đồng biến, do đó f(t) đồng biến trên \(\left(0;+\infty\right)\)
Lại có f(1)=2, từ đó suy ra \(t\le1\)Giải ra được :\(1\le x\)\(\le\frac{5-\sqrt{5}}{2}\) hoặc \(\frac{5-\sqrt{5}}{2}\le x\) \(\le4\)giải các bất phương trình sau
a) \(log\left(x-2\right)< 3\)
b) \(log_2\left(2x-1\right)>3\)
c) \(log_3\left(-x-1\right)\le2\)
d) \(log_2\left(2x-3\right)\ge2\)
e) \(log_3\left(2x-7\right)>2\)
a: \(log\left(x-2\right)< 3\)
=>\(\left\{{}\begin{matrix}x-2>0\\log\left(x-2\right)< log9\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x-2>0\\x-2< 9\end{matrix}\right.\Leftrightarrow2< x< 11\)
b: \(log_2\left(2x-1\right)>3\)
=>\(\left\{{}\begin{matrix}2x-1>0\\log_2\left(2x-1\right)>log_29\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}2x-1>0\\2x-1>9\end{matrix}\right.\Leftrightarrow2x-1>9\)
=>2x>10
=>x>5
c: \(log_3\left(-x-1\right)< =2\)
=>\(\left\{{}\begin{matrix}-x-1>0\\log_3\left(-x-1\right)< =log_39\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}-x-1>0\\-x-1< =9\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-x>1\\-x< =10\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x< -1\\x>=-10\end{matrix}\right.\Leftrightarrow-10< =x< -1\)
d: \(log_2\left(2x-3\right)>=2\)
=>\(\left\{{}\begin{matrix}2x-3>0\\log_2\left(2x-3\right)>=log_24\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}2x-3>0\\2x-3>=4\end{matrix}\right.\)
=>2x-3>=4
=>2x>=7
=>\(x>=\dfrac{7}{2}\)
e: \(log_3\left(2x-7\right)>2\)
=>\(\left\{{}\begin{matrix}2x-7>0\\log_3\left(2x-7\right)>log_39\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x>\dfrac{7}{2}\\2x-7>9\end{matrix}\right.\)
=>2x-7>9
=>2x>16
=>x>8
a.
\(log\left(x-2\right)< 3\)
\(\Leftrightarrow\left\{{}\begin{matrix}x-2>0\\x-2< 10^3\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x>2\\x< 1002\end{matrix}\right.\) \(\Rightarrow2< x< 1002\)
b.
\(log_2\left(2x-1\right)>3\Leftrightarrow\left\{{}\begin{matrix}2x-1>0\\2x-1>2^3\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x>\dfrac{1}{2}\\x>\dfrac{9}{2}\end{matrix}\right.\) \(\Rightarrow x>\dfrac{9}{2}\)
c.
\(log_3\left(-x-1\right)\le2\Rightarrow\left\{{}\begin{matrix}-x-1>0\\-x-1\le3^2\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x< -1\\x\ge-10\end{matrix}\right.\) \(\Rightarrow-10\le x< -1\)
d.
\(log_2\left(2x-3\right)\ge2\Leftrightarrow\left\{{}\begin{matrix}2x-3>0\\2x-3\ge2^2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ge\dfrac{3}{2}\\x>\dfrac{7}{2}\end{matrix}\right.\) \(\Rightarrow x>\dfrac{7}{2}\)
e,
\(log_3\left(2x-7\right)>2\Leftrightarrow\left\{{}\begin{matrix}2x-7>0\\2x-7>3^2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x>\dfrac{7}{2}\\x>8\end{matrix}\right.\) \(\Rightarrow x>8\)
Lời giải:
a. ĐK: $x>2$
$\log(x-2)<3$
$\Leftrightarrow x-2< 10^3$
$\Leftrightarrow x< 1002$
Vậy $2< x< 1002$
b. ĐK: $x> \frac{1}{2}$
$\log_2(2x-1)>3$
$\Leftrightarrow 2x-1> 2^3$
$\Leftrightarrow 2x> 9$
$\Leftrightarrow x> \frac{9}{2}$
Vậy $x> \frac{9}{2}$
c. ĐK: $x< -1$
$\log_3(-x-1)\leq 2$
$\Leftrightarrow -x-1\leq 3^2=9$
$\Leftrightarrow x+1\geq -9$
$\Leftrightarrow x\geq -10$
Vậy $-10\leq x< -1$
d. ĐK: $x> \frac{3}{2}$
$\log_2(2x-3)\geq 2$
$\Leftrightarrow 2x-3\geq 2^2=4$
$\Leftrightarrow x\geq \frac{7}{2}$
Vậy $x\geq \frac{7}{2}$
e. ĐK: $x> \frac{7}{2}$
$\log_3(2x-7)>2$
$\Leftrightarrow 2x-7> 3^2=9$
$\Leftrightarrow x> 8$
Vậy $x>8$
GPT: \(\log_2\left(\sqrt{x^2-5x+5}+1\right)+\log_3\left(x^2-5x+7\right)=2\)
Đặt \(\sqrt{x^2-5x+5}=t>0\)
\(\Rightarrow log_2\left(t+1\right)+log_3\left(t^2+2\right)-2=0\)
Nhận thấy \(t=1\) là 1 nghiệm của pt
Xét hàm \(f\left(t\right)=log_2\left(t+1\right)+log_3\left(t^2+2\right)-2\)
\(f'\left(t\right)=\dfrac{1}{\left(t+1\right)ln2}+\dfrac{2t}{\left(t^2+2\right)ln3}>0\Rightarrow f\left(t\right)\) đồng biến
\(\Rightarrow f\left(t\right)\) có tối đa 1 nghiệm
\(\Rightarrow t=1\) là nghiệm duy nhất của pt
\(\Rightarrow\sqrt{x^2-5x+5}=1\Rightarrow\left[{}\begin{matrix}x=1\\x=4\end{matrix}\right.\)
giải các bất phương trình sau
a) \(log\left(x-5\right)< 2\)
b) \(log_2\left(2x-3\right)>4\)
c) \(log_3\left(2x+5\right)\le3\)
d) \(log_4\left(4x-5\right)\ge2\)
e) \(log_3\left(1-3x\right)>3\)
a: \(log\left(x-5\right)< 2\)
=>\(\left\{{}\begin{matrix}x-5>0\\log\left(x-5\right)< log4\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x-5>0\\x-5< 4\end{matrix}\right.\Leftrightarrow5< x< 9\)
b: \(log_2\left(2x-3\right)>4\)
=>\(log_2\left(2x-3\right)>log_216\)
=>\(\left\{{}\begin{matrix}2x-3>0\\2x-3>16\end{matrix}\right.\)
=>2x-3>16
=>2x>19
=>\(x>\dfrac{19}{2}\)
c: \(log_3\left(2x+5\right)< =3\)
=>\(log_3\left(2x+5\right)< =log_327\)
=>\(\left\{{}\begin{matrix}2x+5>0\\2x+5< =27\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x>-\dfrac{5}{2}\\x< =11\end{matrix}\right.\)
=>\(-\dfrac{5}{2}< x< =11\)
d: \(log_4\left(4x-5\right)>=2\)
=>\(log_4\left(4x-5\right)>=log_416\)
=>4x-5>=16 và 4x-5>0
=>4x>=21 và 4x>5
=>4x>=21
=>\(x>=\dfrac{21}{4}\)
e: \(log_3\left(1-3x\right)>3\)
=>\(log_3\left(1-3x\right)>log_327\)
=>\(\left\{{}\begin{matrix}1-3x>0\\1-3x>27\end{matrix}\right.\)
=>1-3x>27
=>\(-3x>26\)
=>\(x< -\dfrac{26}{3}\)
Tổng các nghiệm nguyên của bất phương trình: \(2\log_2\sqrt{x+1}\le2-\log_2\left(x-2\right)\) bằng
\(ĐKXĐ:x>2\)
BPT đã cho tương đương với:
\(2log_2\sqrt{x+1}+log_2\left(x-2\right)\le2\)
\(\Leftrightarrow log_2\left(x+1\right)+log_2\left(x-2\right)\le2\)
\(\Leftrightarrow log_2\left(x^2-x-2\right)\le2\)\(\Leftrightarrow0< x^2-x-2\le2^2\)\(\Leftrightarrow\left[{}\begin{matrix}2< x\le3\\-2\le x< -1\left(l\right)\end{matrix}\right.\)
Vậy tổng các nghiệm nguyên của bpt là 3
Giải các bất phương trình sau :
a) \(\left(0,5\right)^{\dfrac{1}{x}}\ge0,0625\)
b) \(\log_{0,2}\left(x^2-4\right)\ge-1\)
c) \(\log_2\log_{0,5}\left(2^x-\dfrac{15}{16}\right)\le2\)
d) \(\log_3\left(16^x-2.12^x\right)\le2x+1\)
Giải bất phương trình: \(\left(x+1\right)\left(4-x\right)< 5\sqrt{x^2+5x+28}\)
Có lẽ đây là 1 đề bài ko chính xác
- Với \(\left[{}\begin{matrix}x\le-1\\x\ge4\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}VP>0\\VT\le0\end{matrix}\right.\) BPT luôn đúng
- Với \(-1< x< 4\)
\(VT\le\dfrac{1}{4}\left(x+1+4-x\right)^2=\dfrac{25}{4}\)
\(VP=5\sqrt{\left(x+\dfrac{5}{2}\right)^2+\dfrac{87}{4}}\ge5.\sqrt{\dfrac{87}{4}}>\dfrac{25}{4}>VT\)
Vậy BPT luôn đúng hay tập nghiệm của BPT đã cho là R
Giải các bất phương trình sau:
\(a,\left(x+1\right)\left(x+4\right)< 5\sqrt{x^2+5x+28}\)
\(b,4\sqrt{x}+\dfrac{2}{\sqrt{x}}< 2x+\dfrac{1}{2x}+2\)
a, ĐKXĐ : \(D=R\)
BPT \(\Leftrightarrow x^2+5x+4< 5\sqrt{x^2+5x+4+24}\)
Đặt \(x^2+5x+4=a\left(a\ge-\dfrac{9}{4}\right)\)
BPTTT : \(5\sqrt{a+24}>a\)
\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}a+24\ge0\\a< 0\end{matrix}\right.\\\left\{{}\begin{matrix}a\ge0\\25\left(a+24\right)>a^2\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}-24\le a< 0\\\left\{{}\begin{matrix}a^2-25a-600< 0\\a\ge0\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}-24\le a< 0\\0\le a< 40\end{matrix}\right.\)
\(\Leftrightarrow-24\le a< 40\)
- Thay lại a vào ta được : \(\left\{{}\begin{matrix}x^2+5x-36< 0\\x^2+5x+28\ge0\end{matrix}\right.\)
\(\Leftrightarrow-9< x< 4\)
Vậy ....
b, ĐKXĐ : \(x>0\)
BĐT \(\Leftrightarrow2\left(\sqrt{x}+\dfrac{1}{2\sqrt{x}}\right)< x+\dfrac{1}{4x}+1\)
- Đặt \(\sqrt{x}+\dfrac{1}{2\sqrt{x}}=a\left(a\ge\sqrt{2}\right)\)
\(\Leftrightarrow a^2=x+\dfrac{1}{4x}+1\)
BPTTT : \(2a\le a^2\)
\(\Leftrightarrow\left[{}\begin{matrix}a\le0\\a\ge2\end{matrix}\right.\)
\(\Leftrightarrow a\ge2\)
\(\Leftrightarrow a^2\ge4\)
- Thay a vào lại BPT ta được : \(x+\dfrac{1}{4x}-3\ge0\)
\(\Leftrightarrow4x^2-12x+1\ge0\)
\(\Leftrightarrow x=(0;\dfrac{3-2\sqrt{2}}{2}]\cup[\dfrac{3+2\sqrt{2}}{2};+\infty)\)
Vậy ...
Giải các bất phương trình sau:
a/ \(\sqrt{\left(x-3\right)\left(8-x\right)}+26>-x^2+11x\)
b/ \(\left(x+1\right)\left(x+4\right)< 5\sqrt{x^2+5x+28}\)
GIÚP MÌNH VỚI Ạ!!!