tim GTNN của biểu thức: M=(x-2020)^4+(x+y+1)^2+5
Help me pls
Tìm x,y nguyên biết:
2x^2+2xy-3x-y=5
Help me pls!
Đối với dạng này thì em biến đổi 1 vế thành tích các đa thức còn 1 vế là số nguyên, sau đó tìm ước số nguyên, cho các đa thức bằng ước đó là tìm được .
2x2 + 2xy - 3x - y = 5
( 2x2 + 2xy ) - x - y - 2x + 1 = 6
2x( x + y) - ( x + y) - (2x -1) = 6
( x+y) ( 2x - 1) - ( 2x -1) = 6
(2x -1) ( x + y - 1) = 6
vì 6 = 2.3 => Ư(6) = { -6; -3; - 2; -1; 1; 2; 3; 6}
Nên với x, y \(\in\) Z thì ( 2x-1)(x+y -1) = 6 khi và chỉ khi :
th1 : \(\left\{{}\begin{matrix}2x-1=-1\\x+y-1=-6\end{matrix}\right.\) => \(\left\{{}\begin{matrix}x=0\\y=-5\end{matrix}\right.\)
th2: \(\left\{{}\begin{matrix}2x-1=1\\x+y-1=6\end{matrix}\right.\) => \(\left\{{}\begin{matrix}x=1\\y=6\end{matrix}\right.\)
th3 : \(\left\{{}\begin{matrix}2x-1=-2\\x+y-1=-3\end{matrix}\right.\) => x = -1/2 (loại)
th4 : \(\left\{{}\begin{matrix}2x-1=2\\x+y-1=6\end{matrix}\right.\) => x = 3/2 (loại)
th5 : \(\left\{{}\begin{matrix}2x-1=-3\\x+y-1=-2\end{matrix}\right.\) => \(\left\{{}\begin{matrix}x=-1\\y=0\end{matrix}\right.\)
th6 : \(\left\{{}\begin{matrix}2x-1=3\\x+y-1=2\end{matrix}\right.\) => \(\left\{{}\begin{matrix}x=2\\y=1\end{matrix}\right.\)
th7 : \(\left\{{}\begin{matrix}2x-1=-6\\x+y-1=-1\end{matrix}\right.\) => x = -5/2 (loại)
th8 : \(\left\{{}\begin{matrix}2x-1=6\\x+y-1=1\end{matrix}\right.\) => x 7/2 (loại)
Kết luận các cặp giá trị nguyên của x; y thỏa mãn đề bài là:
(x; y) =(0; -5); (1; 6); ( -1; 0); (2; 1)
a) Tìm GTNN của biểu thức: A= |x+3| + 2020 ; B= -14 + 3 . |x-5|
b) Tìm GTLN của biểu thức: C= 5 - |2x+9| ; D= -5 - 2. |x-7|
Mình đang cần gấp pls. Cảm ơn!!!
Tìm x nguyên để các biểu thức sau đạt giá trị lớn nhất m = 2021 -( x + 1) mũ 2020 b = 2020 phần (x -4) mũ 2 + 7 PLS HELP
Cho 3 số dương x;y;z thỏa mãn x+y+z=4.
Tìm GTNN của biểu thức P =\(\dfrac{x^2}{y+z}+\dfrac{y^2
}{x+z}+\dfrac{z^2}{x+y}=4\)
-PLS GIÚP MÌNH VỚI Ạ-
\(\dfrac{x^2}{y+z}+\dfrac{1}{4}\left(y+z\right)\ge2.\sqrt{\dfrac{x^2}{y+z}.\dfrac{1}{4}\left(y+z\right)}=x\)
Tung tu : \(\dfrac{y^2}{x+z}+\dfrac{1}{4}\left(x+z\right)\ge y\)
\(\dfrac{z^2}{x+y}+\dfrac{1}{4}\left(x+y\right)\ge z\)
=> P+\(\dfrac{1}{4}\left(y+z\right)+\dfrac{1}{4}\left(x+z\right)+\dfrac{1}{4}\left(x+y\right)\ge x+y+z\)
=> P+\(\dfrac{1}{4}\left(2x+2y+2z\right)\ge4\)
=> P+2≥4
=> P≥2
Dau = khi: x=y=z=\(\dfrac{4}{3}\)
Vậy Min P=2 khi x=y=z=\(\dfrac{4}{3}\)
Áp dụng BĐT Cauchy - Schwarz dạng Engel:
\(P=\dfrac{x^2}{y+z}+\dfrac{y^2}{x+z}+\dfrac{z^2}{x+y}\ge\dfrac{\left(x+y+z\right)^2}{2\left(x+y+z\right)}=\dfrac{x+y+z}{2}=\dfrac{4}{2}=2\)
\("="\Leftrightarrow x=y=z=\dfrac{4}{3}\)
Tìm GTNN của các biểu thức sau và GTNN của các biểu thức ứng với x và y có quan hệ NTN
A=\(x^2+2xy+y^2+16\)
B=\(9x^2+6x+y^2+4x+16\)
C=\(4x^2+4x+5y^2+5x\)
PLS,Help Me !!!!!
\(A=x^2+2xy+y^2+16=\left(x+y\right)^2+16\ge16\forall x\)Vậy Min A = 16 khi \(x+y=0\Rightarrow x=-y\)
\(B=9x^2+6x+y^2+4x+16=\left(9x^2+6x+1\right)+\left(y^2+4x+4\right)+11\)
\(=\left(3x+1\right)^2+\left(y+2\right)^2+11\ge11\forall x\)
Vậy Min B = 11 khi \(\left\{{}\begin{matrix}3x+1=0\\y+2=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=-\dfrac{1}{3}\\y=-2\end{matrix}\right.\)
\(C=4x^2+4x+5y^2+5y=\left(4x^2+4x+1\right)+5\left(y^2+y+\dfrac{1}{4}\right)-\dfrac{9}{4}\)\(=\left(2x+1\right)^2+5\left(y+\dfrac{1}{2}\right)^2-\dfrac{9}{4}\)
Vậy Min C = \(\dfrac{9}{4}\) khi \(\left\{{}\begin{matrix}2x+1=0\\y+\dfrac{1}{2}=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=-\dfrac{1}{2}\\y=-\dfrac{1}{2}\end{matrix}\right.\)
Cho x,y thỏa mãn : x^2+2xy+6x+6y+2y^2+8=0. Tìm GTLN, GTNN của biểu thức : M=2019(x+y)+2020
Ta có :
\(x^2+2xy+6x+6y+2y^2+8=0\)
\(\Leftrightarrow\left(x^2+y^2+3^2+2xy+6x+6y\right)+\left(y^2-1\right)=0\)
\(\Leftrightarrow\left(x+y+3\right)^2+\left(y^2-1\right)=0\)
\(\Leftrightarrow\left(x+y+3\right)^2=1-y^2\)
Với mọi y ta có :
\(y^2\ge0\) \(\Leftrightarrow1-y^2\le1\)
\(\Leftrightarrow-1\le x+y+3\le1\)
\(\Leftrightarrow-4\le x+y\le-2\)
\(\Leftrightarrow-6056\le M\le-2019\)
Vậy...
Tìm GTLN,GTNN của biểu thức a,(x-2)^2+2019 b,(x-3)^2+(y-2)^2-2018 c,-(3-x)^100-3.(y+2)^200+2020. d,-|x-1|-2.(2y-1)^2+100
a) \(\left(x-2\right)^2+2019\)
Ta có: \(\left(x-2\right)^2\ge0\forall x\)
\(\Rightarrow\left(x-2\right)^2+2019\ge2019\forall x\)
Dấu '=' xảy ra khi
\(\left(x-2\right)^2=0\Leftrightarrow x-2=0\Leftrightarrow x=2\)
Vậy: Giá trị nhỏ nhất của biểu thức \(\left(x-2\right)^2+2019\) là 2019 khi x=2
b) \(\left(x-3\right)^2+\left(y-2\right)^2-2018\)
Ta có: \(\left(x-3\right)^2\ge0\forall x\)
\(\left(y-2\right)^2\ge0\forall y\)
Do đó: \(\left(x-3\right)^2+\left(y-2\right)^2\ge0\forall x,y\)
\(\Rightarrow\left(x-3\right)^2+\left(y-2\right)^2-2018\ge-2018\forall x,y\)
Dấu '=' xảy ra khi
\(\left\{{}\begin{matrix}\left(x-3\right)^2=0\\\left(y-2\right)^2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x-3=0\\y-2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=3\\y=2\end{matrix}\right.\)
Vậy: Giá trị nhỏ nhất của biểu thức \(\left(x-3\right)^2+\left(y-2\right)^2-2018\) là -2018 khi x=3 và y=2
c) \(-\left(3-x\right)^{100}-3\cdot\left(y+2\right)^{200}+2020\)
Ta có: \(\left(3-x\right)^{100}\ge0\forall x\)
\(\Rightarrow-\left(3-x\right)^{100}\le0\forall x\)
Ta có: \(\left(y+2\right)^{200}\ge0\forall y\)
\(\Rightarrow-3\cdot\left(y+2\right)^{200}\le0\forall y\)
Do đó: \(-\left(3-x\right)^{100}-3\left(y+2\right)^{200}\le0\forall x,y\)
\(\Rightarrow-\left(3-x\right)^{100}-3\left(y+2\right)^{200}+2020\le2020\forall x,y\)
Dấu '=' xảy ra khi
\(\left\{{}\begin{matrix}\left(3-x\right)^{100}=0\\\left(y+2\right)^{200}=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3-x=0\\y+2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=3\\y=-2\end{matrix}\right.\)
Vậy: Giá trị lớn nhất của biểu thức \(-\left(3-x\right)^{100}-3\cdot\left(y+2\right)^{200}+2020\) là 2020 khi x=3 và y=-2
d) \(-\left|x-1\right|-2\left(2y-1\right)^2+100\)
Ta có: \(\left|x-1\right|\ge0\forall x\)
\(\Rightarrow-\left|x-1\right|\le0\forall x\)
Ta có: \(\left(2y-1\right)^2\ge0\forall y\)
\(\Rightarrow-2\left(2y-1\right)^2\le0\forall y\)
Do đó: \(-\left|x-1\right|-2\left(2y-1\right)^2\le0\forall x,y\)
\(\Rightarrow-\left|x-1\right|-2\left(2y-1\right)^2+100\le100\forall x,y\)
Dấu '=' xảy ra khi
\(\left\{{}\begin{matrix}\left|x-1\right|=0\\\left(2y-1\right)^2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x-1=0\\2y-1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=\frac{1}{2}\end{matrix}\right.\)
Vậy: Giá trị lớn nhất của biểu thức \(-\left|x-1\right|-2\left(2y-1\right)^2+100\) là 100 khi x=1 và \(y=\frac{1}{2}\)
tìm GTNN của biểu thức : |2x+1|+|x-y+1|, b: |x+2|+1/2.|2x-1| tìm GTLN của biểu thức : |3x+2|-|2020-3x| các cao nhân giúp em với ạ
1.Tìm GTNN của biểu thức :
a/ A=|2x+1|+|x-y+1|
b/ B=|x+2|+1/2.|2x-1|
2. Tìm GTLN của biểu thức : C=|3x+2|-|2020-3x| mn giúp mình nhé
Bài 1:
a. Ta thấy:
$|2x+1|\geq 0$ với mọi $x$
$|x-y+1|\geq 0$ với mọi $x,y$
$\Rightarrow A=|2x+1|+|x-y+1|\geq 0$ với mọi $x,y$
Vậy gtnn của $A$ là $0$. Giá trị này đạt tại $2x+1=x-y+1=0$
$\Leftrightarrow x=\frac{-1}{2}; y=\frac{1}{2}$
b. Áp dụng BĐT quen thuộc:
$|a|+|b|\geq |a+b|$ ta có:
$B=|x+2|+\frac{1}{2}|2x-1|=|x+2|+|x-\frac{1}{2}|$
$=|x+2|+|\frac{1}{2}-x|$
$\geq |x+2+\frac{1}{2}-x|=\frac{5}{2}$
Vậy gtnn của $B$ là $\frac{5}{2}$. Giá trị này đạt tại $(x+2)(\frac{1}{2}-x)\geq 0$
$\Leftrightarrow -2\leq x\leq \frac{1}{2}$
Bài 2:
Áp dụng BĐT quen thuộc:
$|a|-|b|\leq |a-b|$
$C=|3x+2|-|2020-3x|=|3x+2|-|3x-2020|$
$\leq |3x+2-(3x-2020)|=2022$
Vậy gtln của $C$ là $2022$
Giá trị này đạt tại $3x-2020\geq 0\Leftrightarrow x\geq \frac{2020}{3}$