11. Tìm x
a) (2x-8)(10+2x)≥0
b) (|x|+5)(x-3)<0
Tìm x
a) 4(x + 1)2 + (2x + 1)2 - 8(x – 1)(x + 1) - 11=0
b)(x + 3)2 – (x – 4)(x + 8) – 1 = 0
a: Ta có: \(4\left(x+1\right)^2+\left(2x+1\right)^2-8\left(x-1\right)\left(x+1\right)-11=0\)
\(\Leftrightarrow4x^2+8x+4+4x^2+4x+1-8x^2+8-11=0\)
\(\Leftrightarrow12x=-2\)
hay \(x=-\dfrac{1}{6}\)
b: Ta có: \(\left(x+3\right)^2-\left(x-4\right)\left(x+8\right)-1=0\)
\(\Leftrightarrow x^2+6x+9-x^2-4x+32-1=0\)
\(\Leftrightarrow2x=-40\)
hay x=-20
Bài 10 Tìm x
a/ (2x–5)x2x2 –4x(x–3)= 0
b/ (x–1) x2x2 +(x+6)(3–x)= –1
c/ (3x+1)x2x2 –9x(x–1)= 0
d/ (x–5)x2x2 –(x–4)(x–1)= 10
tim x
a) 4(2x+7)^2-9(x+3)^2=0
b) (5x^2-2x+10)^2=(3x^2+10x -8 )^2
c) (x-3)^2-4=0
d) x ^2-2x=24
a: Ta có: \(4\left(2x+7\right)^2-9\left(x+3\right)^2=0\)
\(\Leftrightarrow\left(4x+14-3x-9\right)\left(4x+14+3x+9\right)=0\)
\(\Leftrightarrow\left(x+5\right)\left(7x+23\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-5\\x=-\dfrac{23}{7}\end{matrix}\right.\)
c: Ta có: \(\left(x-3\right)^2-4=0\)
\(\Leftrightarrow\left(x-5\right)\cdot\left(x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=5\\x=1\end{matrix}\right.\)
b.
PT $\Leftrightarrow (5x^2-2x+10)^2-(3x^2+10x-8)^2=0$
$\Leftrightarrow (5x^2-2x+10-3x^2-10x+8)(5x^2-2x+10+3x^2+10x-8)=0$
$\Leftrightarrow (2x^2-12x+18)(8x^2+8x+2)=0$
$\Leftrightarrow (x^2-6x+9)(4x^2+4x+1)=0$
$\Leftrightarrow (x-3)^2(2x+1)^2=0$
$\Leftrightarrow (x-3)(2x+1)=0$
$\Leftrightarrow x-3=0$ hoặc $2x+1=0$
$\Leftrightarrow x=3$ hoặc $x=-\frac{1}{2}$
d.
$x^2-2x=24$
$\Leftrightarrow x^2-2x-24=0$
$\Leftrightarrow (x+4)(x-6)=0$
$\Leftrightarrow x+4=0$ hoặc $x-6=0$
$\Leftrightarrow x=-4$ hoặc $x=6$
Bài 1: Tìm x
a) 3(x-1)^2.3x(x-5)=0
b) (x+3)^2-5x-15=0
c) 2x^5-4x^3+2x=0
a) \(3\left(x-1\right)^2\cdot3x\left(x-5\right)=0\)
\(\Rightarrow9x\left(x-1\right)^2\left(x-5\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x-1=0\\x-5=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\x=1\\x=5\end{matrix}\right.\)
b) \(\left(x+3\right)^2-5x-15=0\)
\(\Rightarrow\left(x+3\right)^2-5\left(x+3\right)=0\)
\(\Rightarrow\left(x+3\right)\left(x+3-5\right)=0\)
\(\Rightarrow\left(x+3\right)\left(x-2\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x+3=0\\x-2=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-3\\x=2\end{matrix}\right.\)
c) \(2x^5-4x^3+2x=0\)
\(\Rightarrow2x\left(x^4-2x^2+1\right)=0\)
\(\Rightarrow2x\left[\left(x^2\right)^2-2\cdot x^2\cdot1+1^2\right]=0\)
\(\Rightarrow2x\left(x^2-1\right)^2=0\)
\(\Rightarrow2x\left(x-1\right)^2\left(x+1\right)^2=0\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x-1=0\\x+1=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\x=1\\x=-1\end{matrix}\right.\)
\(\text{#}Toru\)
Tìm x
a) 3x(4x - 3) - 2x(5 - 6x) = 0
b) 5(2x - 3) + 4x(x - 2) + 2x(3 - 2x) = 0
c) 3x(2 - x) + 2x(x - 1) = 5x(x + 3)
d) 3x (x + 1) - 5x(3 - x) + 6(x^2 + 2x + 3) = 0
a) 3x(4x-3)-2x(5-6x)=0
\(\Leftrightarrow12x^2-9x-10x+12x^2=0\)
\(\Leftrightarrow24x^2-19x=0\)
\(\Leftrightarrow x\left(24x-19\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\24x-19=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\24x=19\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{19}{24}\end{matrix}\right.\)
Vậy x=0 hoặc x=\(\dfrac{19}{24}\)
b) 5(2x-3)+4x(x-2)+2x(3-2x)=0
\(\Leftrightarrow\)10x-15+4x2-8x+6x-4x2=0
\(\Leftrightarrow8x-15=0\)
\(\Leftrightarrow8x=15\)
\(\Leftrightarrow x=\dfrac{15}{8}\)
vậy x=\(\dfrac{15}{8}\)
c)3x(2-x)+2x(x-1)=5x(x+3)
\(\Leftrightarrow6x-3x^2+2x^2-2x=5x^2+15x\\ \Leftrightarrow4x-x^2=5x^2+15x\\ \Leftrightarrow4x-x^2-5x^2-15x=0\\ \)
\(\Leftrightarrow-6x^2-11x=0\\ \Leftrightarrow-x\left(6x+11\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}-x=0\\6x+11=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\6x=-11\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{-11}{6}\end{matrix}\right.\)
Vậy x=0 hoặc x=\(\dfrac{-11}{6}\)
Tìm x
a) ( 2x + 1 )2- 4x2 + 2x2 - 2 = 0
b) ( x - 2 ) . ( x + 2 ) - ( x + 3 )2 - 2x - 5 = 0
Giúp mình với ;-;
a. (2x + 1)2 - 4x2 + 2x2 - 2 = 0
<=> (2x + 1 - 2x)(2x + 1 + 2x) + 2(x2 - 1) = 0
<=> (4x + 1) + 2x2 - 2 = 0
<=> 4x + 1 + 2x2 - 2 = 0
<=> 2x2 + 4x - 2 + 1 = 0
<=> 2x2 + 4x - 1 = 0
<=> 2x2 + 4x = 1
<=> 2x(x + 2) = 1
Vì 1 chỉ có tích là 1 . 1 nên:
<=> \(\left[{}\begin{matrix}2x=1\\x+2=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{2}\\x=-1\end{matrix}\right.\)
\(a,\Leftrightarrow4x^2+4x+1-4x^2+2x^2-2=0\\ \Leftrightarrow2x^2+4x-1=0\\ \Leftrightarrow2\left(x^2+2x+1\right)-3=0\\ \Leftrightarrow2\left(x+1\right)^2-3=0\\ \Leftrightarrow\left(x+1\right)^2=\dfrac{3}{2}\\ \Leftrightarrow\left[{}\begin{matrix}x+1=\sqrt{\dfrac{3}{2}}\\x+1=-\sqrt{\dfrac{3}{2}}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{-2-\sqrt{6}}{2}\\x=\dfrac{-2+\sqrt{6}}{2}\end{matrix}\right.\)
\(b,\left(x-2\right)\left(x+2\right)-\left(x+3\right)^2-2x-5=0\\ \Leftrightarrow x^2-4-x^2-6x-9-2x-5=0\\ \Leftrightarrow-8x=18\\ \Leftrightarrow x=-\dfrac{9}{4}\)
Tìm x
a)(2x+1)(x-2)-2x²=0
b)(x+3)(2x-1)+x²=9
a) \(\left(2x+1\right)\left(x-2\right)-2x^2=0\)
\(\Leftrightarrow2x^2-4x+x-2-2x^2=0\)
\(\Leftrightarrow\left(2x^2-2x^2\right)-\left(4x-x\right)-2=0\)
\(\Leftrightarrow-3x-2=0\)
\(\Leftrightarrow-3x=2\)
\(\Leftrightarrow x=-\dfrac{2}{3}\)
b) \(\left(x+3\right)\left(2x-1\right)+x^2=9\)
\(\Leftrightarrow\left(x+3\right)\left(2x-1\right)+x^2-9=0\)
\(\Leftrightarrow\left(x+3\right)\left(2x-1\right)+\left(x+3\right)\left(x-3\right)=0\)
\(\Leftrightarrow\left(x+3\right)\left(2x-1+x-3\right)=0\)
\(\Leftrightarrow\left(x+3\right)\left(3x-4\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-3\\3x=4\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=\dfrac{4}{3}\end{matrix}\right.\)
`#3107.101107`
a)
`(2x + 1)(x - 2) - 2x^2 = 0`
`<=> 2x^2 - 3x - 2 - 2x^2 = 0`
`<=> -3x - 2 = 0`
`<=> -3x = 2`
`<=> x = -2/3`
Vậy, `x=-2/3`
b)
`(x + 3)(2x - 1) + x^2 = 9`
`<=> 2x^2 - 5x - 3 + x^2 = 9`
`<=> 3x^2 - 5x - 3 = 9`
`<=> 3x^2 - 3x - 12 = 0`
`<=> 3x^2 + 4x - 9x - 12 = 0`
`<=> (3x^2 - 9x) + (4x - 12) = 0`
`<=> 3x(x - 3) + 4(x - 3) = 0`
`<=> (3x + 4)(x - 3) = 0`
`<=>` TH1: `3x + 4 = 0`
`<=> 3x = -4`
`<=> x = -4/3`
TH2: `x - 3 = 0`
`<=> x = 3`
Vậy,` x \in {-4/3; 3}.`
4/ TÌM X
a)2x (x –9)–2x2= 0
b)(2x + 3 )(x –4 ) + (x –5)(x –2)= (3x –5)(x –4)
Giải ra chi tiết giùm mình nha
\(a,\Rightarrow2x^2-18x-2x^2=0\\ \Rightarrow-18x=0\Rightarrow x=0\\ b,\Rightarrow2x^2-5x-12+x^2-7x+10=3x^2-17x+20\\ \Rightarrow5x=22\Rightarrow x=\dfrac{22}{5}\)
Tìm x
a, x\(^2\)-8x+6=0
b,\(\dfrac{2x-1}{3}+\dfrac{x}{5}=\dfrac{3x}{10}\)
\(a,\Leftrightarrow\left(x^2-8x+16\right)-10=0\\ \Leftrightarrow\left(x-4\right)^2-10=0\\ \Leftrightarrow\left(x-4-\sqrt{10}\right)\left(x-4+\sqrt{10}\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=4+\sqrt{10}\\x=4-\sqrt{10}\end{matrix}\right.\\ b,\Leftrightarrow10\left(2x-1\right)+6x=9x\\ \Leftrightarrow20x-10-3x=0\\ \Leftrightarrow17x=10\Leftrightarrow x=\dfrac{10}{17}\)