bai 2: so sanh
a, 15 va \(\sqrt{235}\)
b,\(\sqrt{7}\)+ \(\sqrt{15}\)va 7
bai 1 : tinh
\(\sqrt{49}\); \(\sqrt{-49}\) ; \(\sqrt{0,01}\)
bai 2 : so sanh
a,15 va \(\sqrt{235}\)
b,\(\sqrt{7}\)+ \(\sqrt{15}\)va 7
bai 3 ; tinh hop ly
A = 7,3.10,5-7,3.15+2,7.10,5-15.2,7
bai 4 : so sanh
a, 1,(05) va 0,(31)
b, 3,0(21) va 3,021
c,0,001 va 0,(001)
d,1,(31) va 1,(313)
so sanh cac so sau(khong dung may tinh)
a) 15 va \(\sqrt{235}\)
Ta có
15 = \(\sqrt{225}<\sqrt{235}\)
=> 15 < \(\sqrt{235}\)
So sanh:
a, \(2-2\sqrt{3}\) va \(4-\sqrt{15}\)
b, \(\sqrt{11}+2\) va \(3+\sqrt{3}\)
a) \(2-2\sqrt{3}\) và \(4-\sqrt{15}\)
Giả sử : \(2-2\sqrt{3}\ge4-\sqrt{15}\)
⇔ \(\sqrt{15}-2\sqrt{3}\ge2\)
⇔ \(\left(\sqrt{15}-2\sqrt{3}\right)^2\ge2^2\)
⇔ 15 - \(12\sqrt{5}+12\) ≥ 4
⇔ 27 -4 ≥ \(12\sqrt{5}\)
⇔ 23 ≥ \(12\sqrt{5}\)
⇔ \(23^2\) ≥ \(\left(12\sqrt{5}\right)^2\)
⇔ 529 ≥ 720 (sai)
Vậy 2 - \(2\sqrt{3}< 4-\sqrt{15}\)
b) \(\sqrt{11}+2\) và \(3+\sqrt{3}\)
Giả sử : \(\sqrt{11}+2\le3+\sqrt{3}\)
⇔ \(\sqrt{11}-\sqrt{3}\le1\)
⇔ \(\left(\sqrt{11}-\sqrt{3}\right)^2\le1\)
⇔ 14 - \(2\sqrt{33}\) ≤ 1
⇔ 13 ≤ \(2\sqrt{33}\)
⇔ \(13^2\le\left(2\sqrt{33}\right)^2\)
⇔ 169 ≤ 132 (sai)
Vậy \(\sqrt{11}+2\ge3+\sqrt{3}\)
1`)So Sanh
a)\(\sqrt{24}+\sqrt{45}\) va 12
b)\(\sqrt{37}-\sqrt{15}\)va 2
giup mk voi nhe
a,Ta có:
\(\left(\sqrt{24}+\sqrt{45}\right)^2=24+45=69\)
\(12^2=144\)
Do 69<144 nên ...
b,tương tự ý a
a ) Ta co \(\sqrt{24}+\sqrt{45}< \sqrt{25}+\sqrt{49}=5+7=12\)
vay \(\sqrt{24}+\sqrt{45}< 12\)
b)ta co \(\sqrt{37}-\sqrt{15}>\sqrt{4}-\sqrt{0}=2-0=2\)
vay \(\sqrt{37}-\sqrt{15}>2\)
Bai 1:Tinh: \(\sqrt{1}\) - \(\sqrt{4}\) + \(\sqrt{9}\) - \(\sqrt{16}\) + \(\sqrt{25}\)- \(\sqrt{36}\)+........- \(\sqrt{400}\)
Bai 2: Thuc hien phep tinh (bang cach hop li neu co the)
a, 15/34+7/21+19/24-1\(\dfrac{15}{17}\)+2/3 c, 1/2+3/2*5/6
b,\(\sqrt{25}\)+3^2-\(\sqrt{9}\)
Bai 3 : mot lop hoc co 35 hs sau khi khao sat so hs duoc xep thanh ba loai gioi,kha ,
trung binh.So hs gioi va kha ti le voi 2 va 3 ; so hs kha va trung binh la luot ti le voi 4 va 5 .Tinh
so hs moi loai?
Bai 4 : thuc hien phep tinh sau do lam tron den chu so thap hpan thu nhat
a, -5,18-0,479 c, ( | -2,45| + 3,1)*1/2 - 3/4
b, (3-1/2)^2 + (1-5/2)^2
Bài 3: Gọi số học sinh giỏi,khá,trung bình lần lượt là a,b,c
Theo bài ra ta có : \(\dfrac{a}{b}=\dfrac{2}{3}\Rightarrow\dfrac{a}{2}=\dfrac{b}{3}\); \(\dfrac{b}{c}=\dfrac{4}{5}\Rightarrow\dfrac{b}{4}=\dfrac{c}{5}\)
\(\Rightarrow\dfrac{a}{2}=\dfrac{b}{3};\dfrac{b}{4}=\dfrac{c}{5}\)
\(\Rightarrow\dfrac{a}{8}=\dfrac{b}{12}=\dfrac{c}{15}\); \(a+b+c=35\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{a}{8}=\dfrac{b}{12}=\dfrac{c}{15}=\dfrac{a+b+c}{8+12+15}=\dfrac{35}{35}=1\)
Ta có : \(\dfrac{a}{8}=1\Rightarrow a=8\)
Làm tương tự ta tính được : \(b=12;c=15\)
Vậy số học sinh giỏi là 8 bạn
Số học sinh khá là 12 bạn
Số học sinh trung bình là 15 bạn
Bài 1:
\(\sqrt{1}-\sqrt{4}+\sqrt{9}-\sqrt{16}+\sqrt{25}-\sqrt{36}+.....-\sqrt{400}\)
\(=1-2+3-4+5-6+.....-20\)
\(=\left(1-2\right)+\left(3-4\right)-\left(5-6\right)+.....+\left(19-20\right)\)
\(=\left(-1\right)\times\dfrac{\dfrac{\left(20-1\right)\times1+1}{2}}{2}\)
\(=\left(-1\right)\times10\)
\(=-10\)
Dễ thế này mà ko ai lm à
Chúc bn học tốt
so sanh x va y biet
a) x=\(2\sqrt{7}\)va y=\(3\sqrt{3}\)
b) x=\(6\sqrt{2}\)va y=\(5\sqrt{3}\)
c) x=\(\sqrt{31}-\sqrt{33}\) va y=\(6-\sqrt{11}\)
bai 4 so sanh cac so thuc
\(\frac{4}{9}va\)0,4(5)
\(\sqrt[2]{3}va\sqrt[3]{2}\)
so sanh ko dung may tinh
1 )\(\sqrt{3}\) +\(\sqrt{7}\) va 2+ \(\sqrt{6}\)
2) \(\sqrt{7}\) - \(\sqrt{5}\) va \(\sqrt{6}-2\)
3) \(\sqrt{11}-\sqrt{7}vs\sqrt{7}-\sqrt{3}\)
1: \(\left(\sqrt{3}+\sqrt{7}\right)^2=10+2\sqrt{21}\)
\(\left(2+\sqrt{6}\right)^2=10+4\sqrt{6}\)
mà 2 căn 21<4 căn 6
nên căn 3+căn 7<2+căn 6
2: \(\sqrt{7}-\sqrt{5}=\dfrac{2}{\sqrt{7}+\sqrt{5}}\)
\(\sqrt{6}-2=\dfrac{2}{\sqrt{6}+2}\)
mà \(\sqrt{7}+\sqrt{5}>\sqrt{6}+2\)
nên \(\sqrt{7}-\sqrt{5}< \sqrt{6}-2\)
3: \(\sqrt{11}-\sqrt{7}=\dfrac{4}{\sqrt{11}+\sqrt{7}}\)
\(\sqrt{7}-\sqrt{3}=\dfrac{4}{\sqrt{7}+\sqrt{3}}\)
mà căn 11>căn 3
nên \(\sqrt{11}-\sqrt{7}< \sqrt{7}-\sqrt{3}\)
So sanh
16 va \(\sqrt{15}\). \(\sqrt{17}\)
Ta có :
√15.√17= √16-1.√16+1
=√162-1
Vì 162-1 < 162 nên
√162-1< √162
Vậy 16> √15.√17
\(\sqrt{15}\cdot\sqrt{17}=\sqrt{255}< \sqrt{256}=16\)
\(16=\sqrt{16^2}\)
\(16^2=\left(15+1\right).\left(17-1\right)=15.17-15+17=15.17+2\)
Mà \(15.17+2>15.17\)
\(\Leftrightarrow\sqrt{15.17+2}>\sqrt{15.17}\)
\(\Leftrightarrow16>\sqrt{15}.\sqrt{17}\)