Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Vũ Hà An
Xem chi tiết
Nguyễn Việt Lâm
22 tháng 3 2022 lúc 16:43

\(M=\left|3x-2\right|+\left|3x-6\right|=\left|3x-2\right|+\left|6-3x\right|\ge\left|3x-2+6-3x\right|=4\)

\(M_{min}=4\) khi \(\dfrac{3}{2}\le x\le2\)

Xem chi tiết
Nguyễn Huy Tú
18 tháng 7 2021 lúc 8:55

mình nghĩ đề là tìm n nguyên để biểu thức nhận giá trị nguyên nhé

Ta có : \(B=\dfrac{2n+1}{n-2}=\dfrac{2\left(n-2\right)+5}{n-2}=2+\dfrac{5}{n-2}\)

Vì 2 nguyên nên \(\dfrac{5}{n-2}\)cũng nguyên 

\(\Rightarrow n-2\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\)

n - 21-15-5
n317-3

 

Trịnh Đức Hiếu
Xem chi tiết
Bùi Võ Đức Trọng
28 tháng 7 2021 lúc 8:56

https://tuhoc365.vn/qa/cho-bieu-thuc-p-a4-b4-ab-voi-ab-la-cac-so-thuc-thoa-man-a2-b2-ab-3-tim-gia-tri-lon/

Bạn có thể tham khảo ở đây nha. 

Hà Nguyên Đặng Lê
Xem chi tiết

A = \(\dfrac{22-3x}{4-x}\)

A = \(\dfrac{3.\left(4-x\right)+10}{4-x}\)

A = 3 + \(\dfrac{10}{4-x}\)

A lớn nhất khi \(\dfrac{10}{4-x}\) lớn nhất. Vì 10 > 0; \(x\) \(\in\) Z nên \(\dfrac{10}{4-x}\) lớn nhất khi

 4 - \(x\) = 1 ⇒ \(x\) = 4 - 1 ⇒   \(x\) = 3

Vậy Amin  = 3 + \(\dfrac{10}{1}\) = 13 khi \(x\) =3

Kết luận giái trị lớn nhất của biểu thức là 13 xảy ra khi \(x\) = 3 

Tài Phùng
Xem chi tiết
2611
28 tháng 7 2023 lúc 21:57

Đề yêu cầu là gì bạn?

Nguyễn Lê Phước Thịnh
28 tháng 7 2023 lúc 21:58

=x^2+7x+49/4-8133/4

=(x+7/2)^2-8133/4>=-8133/4

Dấu = xảy ra khi x=-7/2

乇尺尺のレ
28 tháng 7 2023 lúc 22:25

\(x^2+7x-2021\\ =x^2+7x+12,25-2033,25\\ =\left(x+3,5\right)^2-2033,5\\ =-2033,5+\left(x+3,5\right)^2\)

\(Vì\) \(\left(x+3,5\right)^2\ge0\)

Nên GTNN của biểu thức là \(-2033,5\) khi \(x+3,5=0\Leftrightarrow x=-3,5\)

Nguyễn Mai Anh
Xem chi tiết

\(a,\\ A=25x^2-10x+11\\ =\left(5x\right)^2-2.5x.1+1^2+10\\ =\left(5x+1\right)^2+10\ge10\forall x\in R\\ Vậy:min_A=10.khi.5x+1=0\Leftrightarrow x=-\dfrac{1}{5}\\ B=\left(x-3\right)^2+\left(11-x\right)^2\\ =\left(x^2-6x+9\right)+\left(121-22x+x^2\right)\\ =x^2+x^2-6x-22x+9+121=2x^2-28x+130\\ =2\left(x^2-14x+49\right)+32\\ =2\left(x-7\right)^2+32\\ Vì:2\left(x-7\right)^2\ge0\forall x\in R\\ Nên:2\left(x-7\right)^2+32\ge32\forall x\in R\\ Vậy:min_B=32.khi.\left(x-7\right)=0\Leftrightarrow x=7\\Tương.tự.cho.biểu.thức.C\)

Nguyễn Lê Phước Thịnh
15 tháng 10 2023 lúc 9:35

b:

\(D=-25x^2+10x-1-10\)

\(=-\left(25x^2-10x+1\right)-10\)

\(=-\left(5x-1\right)^2-10< =-10\)

Dấu = xảy ra khi x=1/5

\(E=-9x^2-6x-1+20\)

\(=-\left(9x^2+6x+1\right)+20\)

\(=-\left(3x+1\right)^2+20< =20\)

Dấu = xảy ra khi x=-1/3

\(F=-x^2+2x-1+1\)

\(=-\left(x^2-2x+1\right)+1=-\left(x-1\right)^2+1< =1\)

Dấu = xảy ra khi x=1

Lê Ngọc Mai
Xem chi tiết
Lê Ngọc Mai
5 tháng 5 2023 lúc 21:09

mn trả lời đi mà,mình tick cho

Lê văn trương
5 tháng 5 2023 lúc 21:25

5,2÷1,3

 

Duc Nguyen
7 tháng 5 2023 lúc 15:07

\(B=\left|x-3\right|+\left|x-5\right|\)

Vì \(\left|x-3\right|,\left|x-5\right|\ge0\forall x\)

\(\Rightarrow\left|x-3\right|+\left|x-5\right|\ge0\forall x\)

\(\Rightarrow B\ge0\)

+) Nếu \(x< 3\Rightarrow\left|x-3\right|=3-x,\left|x-5\right|=5-x\) 

\(\Rightarrow B=\left|x-3\right|+\left|x-5\right|=3-x+5-x=8-2x\)

TH1: Nếu \(x< 0\Rightarrow-x>0\Rightarrow B=8+2\left(-x\right)>8\)

TH2: Nếu \(x=0\Rightarrow B=8\)

TH3: Nếu \(0< x< 3\Rightarrow B=8-2x< 8\)

+) Nếu \(x=3\Rightarrow\left|x-3\right|=0,\left|x-5\right|=2\) 

\(\Rightarrow B=\left|x-3\right|+\left|x-5\right|=2\)

+) Nếu \(3< x< 5\Rightarrow\left|x-3\right|=x-3,\left|x-5\right|=5-x\) 

\(\Rightarrow B=\left|x-3\right|+\left|x-5\right|=x-3+5-x=2\)

+) Nếu \(x=5\Rightarrow\left|x-3\right|=2,\left|x-5\right|=0\)

\(\Rightarrow B=\left|x-3\right|+\left|x-5\right|=2\)

+) Nếu \(x>5\Rightarrow\left|x-3\right|=x-3,\left|x-5\right|=x-5\)

\(B=\left|x-3\right|+\left|x-5\right|=x-3+x-5=2x-8>2\)

\(\Rightarrow B_{max}>8\Leftrightarrow x< 0\)

 

Nguyễn Thị Quỳnh
Xem chi tiết
Lê Thị Thục Hiền
12 tháng 7 2021 lúc 9:14

a)\(A=2x+1-x^2=2-\left(x^2-2x+1\right)=2-\left(x-1\right)^2\le2;\forall x\)

\(\Rightarrow A_{max}=2\Leftrightarrow x=1\)

b)\(B=4x-4x^2-5=-4-\left(4x^2-4x+1\right)=-4-\left(2x-1\right)^2\le-4;\forall x\)

\(\Rightarrow B_{max}=-4\Leftrightarrow x=\dfrac{1}{2}\)

Trần Ái Linh
12 tháng 7 2021 lúc 9:16

a) `A=2x+1-x^2`

`=-(x^2-2x-1)`

`=-(x^2-2x+1)+2`

`=-(x-1)^2+2`

Có: `-(x-1)^2 <= forall x => -(x-1)^2+2 <=2`

`=> A_(max)=2 <=> x=1`

b) `B=4x-4x^2-5`

`=-(4x^2-4x+5)`

`=-(4x^2-4x+1)-4`

`=-[(2x)^2-2.2x.1+1^2]-4`

`=-(2x-1)^2+4`

`=> B_(max)=4 <=> x=1/2`

Nguyễn Lê Phước Thịnh
12 tháng 7 2021 lúc 14:08

a) Ta có: \(A=-x^2+2x+1\)

\(=-\left(x^2+2x-1\right)\)

\(=-\left(x+1\right)^2+2\le2\forall x\)

Dấu '=' xảy ra khi x=-1

b) Ta có: \(B=-4x^2+4x-5\)

\(=-\left(4x^2-4x+5\right)\)

\(=-\left(2x-1\right)^2-4\le-4\forall x\)

Dấu '=' xảy ra khi \(x=\dfrac{1}{2}\)

Đinh Cẩm Tú
Xem chi tiết
Akai Haruma
11 tháng 1 2021 lúc 19:08

Lời giải:

a)

$A=5-8x-x^2=21-(x^2+8x+16)=21-(x+4)^2$Vì $(x+4)^2\geq 0$ nên $A=21-(x+4)^2\leq 21$

Vậy GTLN của $A$ là $21$. Giá trị này đạt tại $x+4=0\Leftrightarrow x=-4$

b) 

$B=5-x^2+2x-4y^2-4y=5-(x^2-2x)-(4y^2+4y)$

$=7-(x^2-2x+1)-(4y^2+4y+1)$

$=7-(x-1)^2-(2y+1)^2$

Vì $(x-1)^2\geq 0; (2y+1)^2\geq 0$ với mọi $x,y$ nên $B=7-(x-1)^2-(2y+1)^2\leq 7$Vậy GTLN của $B$ là $7$ tại $x=1; y=\frac{-1}{2}$