Mn giúp em với ạ
Tìm giá trị lớn nhất của các biểu thức sau:
a) A=8a-8a2+3
Giúp mình với ạ
Tìm giá trị nhỏ nhất của biểu thức: M= |3x-2| +3.|x-2|
\(M=\left|3x-2\right|+\left|3x-6\right|=\left|3x-2\right|+\left|6-3x\right|\ge\left|3x-2+6-3x\right|=4\)
\(M_{min}=4\) khi \(\dfrac{3}{2}\le x\le2\)
giúp em với. em cần gấp. camon ạ
Tìm n sao cho các biểu thức sau có giá trị là số nguyên
a, A=\(\dfrac{6}{3}\)
b, B= \(\dfrac{2n+1}{n-2}\)
mình nghĩ đề là tìm n nguyên để biểu thức nhận giá trị nguyên nhé
Ta có : \(B=\dfrac{2n+1}{n-2}=\dfrac{2\left(n-2\right)+5}{n-2}=2+\dfrac{5}{n-2}\)
Vì 2 nguyên nên \(\dfrac{5}{n-2}\)cũng nguyên
\(\Rightarrow n-2\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\)
n - 2 | 1 | -1 | 5 | -5 |
n | 3 | 1 | 7 | -3 |
giúp em với em đang cần gấp ạ
Cho biểu thức P =a4+b4-ab,với a,b là các số thực thoả mãn
a2+b2+ab=3.Tìm giá trị lớn nhất và giá trị nhỏ nhất của biểu thức P
https://tuhoc365.vn/qa/cho-bieu-thuc-p-a4-b4-ab-voi-ab-la-cac-so-thuc-thoa-man-a2-b2-ab-3-tim-gia-tri-lon/
Bạn có thể tham khảo ở đây nha.
Tìm các giá trị nguyên của x để biểu thức A=\(\dfrac{22-3x}{4-x}\)có giá trị lớn nhất.
MN giúp mình với mình đang cần gấp lắm
A = \(\dfrac{22-3x}{4-x}\)
A = \(\dfrac{3.\left(4-x\right)+10}{4-x}\)
A = 3 + \(\dfrac{10}{4-x}\)
A lớn nhất khi \(\dfrac{10}{4-x}\) lớn nhất. Vì 10 > 0; \(x\) \(\in\) Z nên \(\dfrac{10}{4-x}\) lớn nhất khi
4 - \(x\) = 1 ⇒ \(x\) = 4 - 1 ⇒ \(x\) = 3
Vậy Amin = 3 + \(\dfrac{10}{1}\) = 13 khi \(x\) =3
Kết luận giái trị lớn nhất của biểu thức là 13 xảy ra khi \(x\) = 3
Giải giúp mình với ạ
Tìm giá trị nhỏ nhất của biểu thức
x^2+7x-2021
=x^2+7x+49/4-8133/4
=(x+7/2)^2-8133/4>=-8133/4
Dấu = xảy ra khi x=-7/2
\(x^2+7x-2021\\ =x^2+7x+12,25-2033,25\\ =\left(x+3,5\right)^2-2033,5\\ =-2033,5+\left(x+3,5\right)^2\)
\(Vì\) \(\left(x+3,5\right)^2\ge0\)
Nên GTNN của biểu thức là \(-2033,5\) khi \(x+3,5=0\Leftrightarrow x=-3,5\)
a)Tìm giá trị nhỏ nhất của các biểu thức sau:
A = 25x2 - 10x + 11
B = (x - 3)2 + (11 - x)2
C = (x + 1)(x - 2)(x - 3)(x - 6)
b) Tìm giá trị lớn nhất của các các biểu thức sau:
D = 10x - 25x2 - 11
E = 19 - 6x - 9 x2
F = 2x - x2
c) Cho x và y thỏa mãn: x2 + 2xy + 6x + 2y2 + 8 = 0
Tìm giá trị lớn nhất và nhỏ nhất của biểu thức B = x + y + 2024
\(a,\\ A=25x^2-10x+11\\ =\left(5x\right)^2-2.5x.1+1^2+10\\ =\left(5x+1\right)^2+10\ge10\forall x\in R\\ Vậy:min_A=10.khi.5x+1=0\Leftrightarrow x=-\dfrac{1}{5}\\ B=\left(x-3\right)^2+\left(11-x\right)^2\\ =\left(x^2-6x+9\right)+\left(121-22x+x^2\right)\\ =x^2+x^2-6x-22x+9+121=2x^2-28x+130\\ =2\left(x^2-14x+49\right)+32\\ =2\left(x-7\right)^2+32\\ Vì:2\left(x-7\right)^2\ge0\forall x\in R\\ Nên:2\left(x-7\right)^2+32\ge32\forall x\in R\\ Vậy:min_B=32.khi.\left(x-7\right)=0\Leftrightarrow x=7\\Tương.tự.cho.biểu.thức.C\)
b:
\(D=-25x^2+10x-1-10\)
\(=-\left(25x^2-10x+1\right)-10\)
\(=-\left(5x-1\right)^2-10< =-10\)
Dấu = xảy ra khi x=1/5
\(E=-9x^2-6x-1+20\)
\(=-\left(9x^2+6x+1\right)+20\)
\(=-\left(3x+1\right)^2+20< =20\)
Dấu = xảy ra khi x=-1/3
\(F=-x^2+2x-1+1\)
\(=-\left(x^2-2x+1\right)+1=-\left(x-1\right)^2+1< =1\)
Dấu = xảy ra khi x=1
tìm giá trị lớn nhất của biểu thức B=|x-3|+|x-5|
Giúp mình với mn ơi
\(B=\left|x-3\right|+\left|x-5\right|\)
Vì \(\left|x-3\right|,\left|x-5\right|\ge0\forall x\)
\(\Rightarrow\left|x-3\right|+\left|x-5\right|\ge0\forall x\)
\(\Rightarrow B\ge0\)
+) Nếu \(x< 3\Rightarrow\left|x-3\right|=3-x,\left|x-5\right|=5-x\)
\(\Rightarrow B=\left|x-3\right|+\left|x-5\right|=3-x+5-x=8-2x\)
TH1: Nếu \(x< 0\Rightarrow-x>0\Rightarrow B=8+2\left(-x\right)>8\)
TH2: Nếu \(x=0\Rightarrow B=8\)
TH3: Nếu \(0< x< 3\Rightarrow B=8-2x< 8\)
+) Nếu \(x=3\Rightarrow\left|x-3\right|=0,\left|x-5\right|=2\)
\(\Rightarrow B=\left|x-3\right|+\left|x-5\right|=2\)
+) Nếu \(3< x< 5\Rightarrow\left|x-3\right|=x-3,\left|x-5\right|=5-x\)
\(\Rightarrow B=\left|x-3\right|+\left|x-5\right|=x-3+5-x=2\)
+) Nếu \(x=5\Rightarrow\left|x-3\right|=2,\left|x-5\right|=0\)
\(\Rightarrow B=\left|x-3\right|+\left|x-5\right|=2\)
+) Nếu \(x>5\Rightarrow\left|x-3\right|=x-3,\left|x-5\right|=x-5\)
\(B=\left|x-3\right|+\left|x-5\right|=x-3+x-5=2x-8>2\)
\(\Rightarrow B_{max}>8\Leftrightarrow x< 0\)
Tìm giá trị lớn nhất của các biểu thức sau:
a) A=2x+1-x^2
b)B=4x-4x^2-5
a)\(A=2x+1-x^2=2-\left(x^2-2x+1\right)=2-\left(x-1\right)^2\le2;\forall x\)
\(\Rightarrow A_{max}=2\Leftrightarrow x=1\)
b)\(B=4x-4x^2-5=-4-\left(4x^2-4x+1\right)=-4-\left(2x-1\right)^2\le-4;\forall x\)
\(\Rightarrow B_{max}=-4\Leftrightarrow x=\dfrac{1}{2}\)
a) `A=2x+1-x^2`
`=-(x^2-2x-1)`
`=-(x^2-2x+1)+2`
`=-(x-1)^2+2`
Có: `-(x-1)^2 <= forall x => -(x-1)^2+2 <=2`
`=> A_(max)=2 <=> x=1`
b) `B=4x-4x^2-5`
`=-(4x^2-4x+5)`
`=-(4x^2-4x+1)-4`
`=-[(2x)^2-2.2x.1+1^2]-4`
`=-(2x-1)^2+4`
`=> B_(max)=4 <=> x=1/2`
a) Ta có: \(A=-x^2+2x+1\)
\(=-\left(x^2+2x-1\right)\)
\(=-\left(x+1\right)^2+2\le2\forall x\)
Dấu '=' xảy ra khi x=-1
b) Ta có: \(B=-4x^2+4x-5\)
\(=-\left(4x^2-4x+5\right)\)
\(=-\left(2x-1\right)^2-4\le-4\forall x\)
Dấu '=' xảy ra khi \(x=\dfrac{1}{2}\)
Tính giá trị lớn nhất của các biểu thức sau:
a) A = 5 - 8x - x2
b) B = 5 - x2 + 2x - 4y2 - 4y
Lời giải:
a)
$A=5-8x-x^2=21-(x^2+8x+16)=21-(x+4)^2$Vì $(x+4)^2\geq 0$ nên $A=21-(x+4)^2\leq 21$
Vậy GTLN của $A$ là $21$. Giá trị này đạt tại $x+4=0\Leftrightarrow x=-4$
b)
$B=5-x^2+2x-4y^2-4y=5-(x^2-2x)-(4y^2+4y)$
$=7-(x^2-2x+1)-(4y^2+4y+1)$
$=7-(x-1)^2-(2y+1)^2$
Vì $(x-1)^2\geq 0; (2y+1)^2\geq 0$ với mọi $x,y$ nên $B=7-(x-1)^2-(2y+1)^2\leq 7$Vậy GTLN của $B$ là $7$ tại $x=1; y=\frac{-1}{2}$