Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Thỏ Nghịch Ngợm
Xem chi tiết
Thịnh Gia Vân
6 tháng 1 2021 lúc 21:19

a) Ta có: \(Q=-x^2-y^2+4x-4y+2=-\left(x^2+y^2-4x+4y-2\right)\)

\(=-\left(x^2-4x+4+y^2+4y+4\right)+10\)

\(=-\left[\left(x-2\right)^2+\left(y+2\right)^2\right]+10\le10\forall x,y\)

Vậy MaxQ=10 khi x=2, y=-2

b) +Ta có: \(A=-x^2-6x+5=-\left(x^2+6x-5\right)=-\left(x^2+6x+9-14\right)\)

\(=-\left(x^2+6x+9\right)+14=-\left(x+3\right)^2+14\le14\forall x\)

Vậy MaxA=14 khi x=-3

+Ta có: \(B=-4x^2-9y^2-4x+6y+3=-\left(4x^2+9y^2+4x-6y-3\right)\)

\(=-\left(4x^2+4x+1+9y^2-6y+1-5\right)\)

\(=-\left[\left(2x+1\right)^2+\left(3y-1\right)^2\right]+5\le5\forall x,y\)

Vậy MaxB=5 khi x=-1/2, y=1/3

c) Ta có: \(P=x^2+y^2-2x+6y+12=x^2-2x+1+y^2+6y+9+2\)

\(=\left(x-1\right)^2+\left(y+3\right)^2+2\ge2\forall x,y\)

Vậy MinP=2 khi x=1, y=-3

Phạm Trí Tâm
Xem chi tiết
Nguyễn Thanh Hằng
3 tháng 10 2019 lúc 20:59

a/ \(A=x^2+y^2-2x+6y+12\)

\(=\left(x^2-2x+1\right)+\left(y^2+6y+9\right)+2\)

\(=\left(x-1\right)^2+\left(y+3\right)^2+2\)

Với mọi x, y ta có :

\(\left\{{}\begin{matrix}\left(x-1\right)^2\ge0\\\left(y+3\right)^2\ge0\end{matrix}\right.\)

\(\Leftrightarrow\left(x-1\right)^2+\left(y+3\right)^2\ge0\)

\(\Leftrightarrow A\ge3\)

Dấu "=" xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=-3\end{matrix}\right.\)

Vậy....

b/ \(B=-4x^2-9y^2-4x+6y+3\)

\(=-\left(4x^2+4x+1\right)-\left(9y^2+6y+1\right)+1\)

\(=-\left(2x+1\right)^2-\left(3y+1\right)^2+1\)

Với mọi x, y ta có :

\(\left\{{}\begin{matrix}\left(2x+1\right)^2\ge0\\\left(3y+1\right)^2\ge0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}-\left(2x+1\right)^2\le0\\-\left(3y+1\right)^2\le0\end{matrix}\right.\)

\(\Leftrightarrow-\left(2x+1\right)^2-\left(3y+1\right)^2\le0\)

\(\Leftrightarrow B\le1\)

Dấu "=" xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}x=-\frac{1}{2}\\y=-\frac{1}{3}\end{matrix}\right.\)

ỉn2k8>.
Xem chi tiết
Nguyễn Ngọc Lộc
29 tháng 6 2021 lúc 8:26

Bài 2 :

\(A=4x^2-2.2x.2+4+1\)

\(=\left(2x-2\right)^2+1\)

Thấy : \(\left(2x-2\right)^2\ge0\)

\(A=\left(2x-2\right)^2+1\ge1\)

Vậy \(MinA=1\Leftrightarrow x=1\)

\(B=\left(5x\right)^2-2.5x.1+1-4\)

\(=\left(5x-1\right)^2-4\)

Thấy : \(\left(5x-1\right)^2\ge0\)

\(\Rightarrow B=\left(5x-1\right)^2-4\ge-4\)

Vậy \(MinB=-4\Leftrightarrow x=\dfrac{1}{5}\)

\(C=\left(7x\right)^2-2.7x.2+4-5\)

\(=\left(7x-2\right)^2-5\)

Thấy : \(\left(7x-2\right)^2\ge0\)

\(\Rightarrow C=\left(7x-2\right)^2-5\ge-5\)

Vậy \(MinC=-5\Leftrightarrow x=\dfrac{2}{7}\)

missing you =
29 tháng 6 2021 lúc 8:33

\(1.\)

\(A=-x^2-10x+1=-\left(x^2+10x-1\right)\)

\(=-\left(x^2+2.5x+5^2-5^2-1\right)=-\left[\left(x+5\right)^2-26\right]\)

\(=-\left(x+5\right)^2+26\le26\) dấu "=" xảy ra<=>x=-5

\(B=-4x^2-6x-5=-4\left(x^2+\dfrac{6}{4}x+\dfrac{5}{4}\right)\)

\(=-4\left(x^2+2.\dfrac{3}{4}x+\dfrac{9}{16}+\dfrac{11}{16}\right)\)\(=-4\left[\left(x+\dfrac{3}{2}\right)^2+\dfrac{11}{6}\right]\le-\dfrac{11}{4}\)

\(C=-16x^2+8x-1=-16\left(x^2-\dfrac{1}{2}x+\dfrac{1}{16}\right)\)

\(=-16\left(x^2-2.\dfrac{1}{4}x+\dfrac{1}{16}\right)=-16\left(x-\dfrac{1}{4}\right)^2\le0\)

dấu"=" xảy ra<=>x=1/4

 

 

 

Ngô Song Linh
Xem chi tiết
Minh Anh
11 tháng 9 2016 lúc 23:01

a) \(A=x^2-2x+5\)

\(A=x^2-2x+1+4\)

\(A=\left(x-1\right)^2+4\)

Có:  \(\left(x-1\right)^2\ge0\Rightarrow\left(x-1\right)^2+4\ge4\)

Dấu '=' xảy ra khi: \(\left(x-1\right)^2=0\Rightarrow x-1=0\Rightarrow x=1\)

Vậy: \(Min_A=4\) tại \(x=1\)

b) \(B=x^2+x+1\)

\(B=x^2+x+\frac{1}{4}+\frac{3}{4}\)

\(B=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\)

Có: \(\left(x+\frac{1}{2}\right)^2\ge0\Rightarrow\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\)

Dấu '=' xảy ra khi: \(\left(x+\frac{1}{2}\right)^2=0\Rightarrow x+\frac{1}{2}=0\Rightarrow x=-\frac{1}{2}\)

Vậy: \(Min_B=\frac{3}{4}\) tại \(x=-\frac{1}{2}\)

Minh Anh
11 tháng 9 2016 lúc 23:26

c) \(C=4x-x^2+3\)

\(C=-x^2+4x-4+8\) 

\(C=8-\left(x^2-4x+4\right)\)

\(C=8-\left(x-2\right)^2\)

Có: \(\left(x-2\right)^2\ge0\Rightarrow8-\left(x-2\right)^2\le8\)

Dấu '=' xảy ra khi: \(\left(x-2\right)^2=0\Rightarrow x-2=0\Rightarrow x=2\)

Vậy: \(Max_C=8\) tại \(x=2\)

ngọc mít
Xem chi tiết
Vũ Thị Thương 21
Xem chi tiết
Vũ Anh Quân
18 tháng 8 2017 lúc 15:07

Bài 1 :

a, \(A=x\left(x-6\right)+10\)

=x^2 - 6x + 10

=x^2 - 2.3x+9+1

=(x-3)^2 +1 >0 Với mọi x dương

Vũ Thị Thương 21
18 tháng 8 2017 lúc 15:11

Cảm ơn bạn Vũ Anh Quân ;) ;) ;) 

Việt Anh
Xem chi tiết
ILoveMath
3 tháng 9 2021 lúc 9:18

\(A=x^2-4x+1=\left(x^2-4x+4\right)-3=\left(x-2\right)^2-3\ge-3\)

Vậy \(A_{Min}=-3khix=2\)

 

Mai Huy Long
Xem chi tiết
T.Thùy Ninh
21 tháng 6 2017 lúc 10:06

\(A=x^2-8x+13=\left(x^2-8x+16\right)-3\ge-3\)Vậy \(Min_A=-3\) khi \(x+4=0\Leftrightarrow x=-4\)

\(B=2x^2+10x+5=2\left(x^2+5x+\dfrac{25}{4}\right)-\dfrac{5}{4}=2\left(x+\dfrac{5}{2}\right)^2-\dfrac{5}{4}\ge\dfrac{-5}{4}\)Vậy \(Min_B=-\dfrac{5}{4}\) khi \(x+\dfrac{5}{2}=0\Rightarrow=\dfrac{-5}{2}\)

\(C=4x-x^2=4-\left(4-4x+x^2\right)=4-\left(2-x\right)^2\le4\)Vậy \(Max_C=4\) khi \(2-x=0\Rightarrow x=2\)

Đức Hiếu
21 tháng 6 2017 lúc 10:13

Bài 1:

a, \(A=x^2-8x+13\)

\(A=x^2-4x-4x+16-3\)

\(A=\left(x-4\right)^2-3\)

Với mọi giá trị của \(x\in R\) ta có:

\(\left(x-4\right)^2\ge0\Rightarrow\left(x-4\right)^2-3\ge-3\)

Hay \(A\ge-3\) với mọi giá trị của \(x\in R\).

Để \(A=-3\) thì \(\left(x-4\right)^2-3=-3\Rightarrow x=4\)

Vậy......

Câu b tương tự

c, \(4x-x^2\)

\(C=-\left(x^2-4x\right)=-\left(x^2-2x-2x+4-4\right)\)

\(=-\left[\left(x-2\right)^2-4\right]\)

Với mọi giá trị của \(x\in R\) ta có:

\(\left(x-2\right)^2\ge0\Rightarrow\left(x-2\right)^2-4\ge-4\)

\(\Rightarrow-\left[\left(x-2\right)^2-4\right]\le4\)

Hay \(A\le4\) với mọi giá trị của \(x\in R\).

Để \(A=4\) thì \(-\left[\left(x-2\right)^2-4\right]=4\Rightarrow x=2\)

Vậy......

Chúc bạn học tốt!!!

Đức Hiếu
21 tháng 6 2017 lúc 10:02

Quang Duy nè cho anh làm em làm từ nãy h cái này chán lắm rùi

thngann
Xem chi tiết
Akai Haruma
31 tháng 10 2020 lúc 7:41

a)

$x^2-2x+5y^2-4y+2020=(x^2-2x+1)+5(y^2-\frac{4}{5}y+\frac{2^2}{5^2})+\frac{10091}{5}$

$=(x-1)^2+5(y-\frac{2}{5})^2+\frac{10091}{5}$

$\geq \frac{10091}{5}$

Vậy GTNN của biểu thức là $\frac{10091}{5}$. Giá trị này đạt được tại $(x-1)^2=(y-\frac{2}{5})^2=0$

$\Leftrightarrow x=1; y=\frac{2}{5}$

b)

\(B=(x-5)^2-(3x-7)^2=(x-5-3x+7)(x-5+3x-7)\)

\(=(2-2x)(4x-12)=8(1-x)(x-3)=8(x-3-x^2+3x)\)

\(=8(4x-3-x^2)=8[1-(x^2-4x+4)]=8[1-(x-2)^2]\)

Vì $(x-2)^2\geq 0, \forall x\in\mathbb{R}$ nên $1-(x-2)^2\leq 1$

$\Rightarrow B=8[1-(x-2)^2]\leq 8$. Vậy GTLN của biểu thức là $8$ khi $x=2$

Khách vãng lai đã xóa
Akai Haruma
31 tháng 10 2020 lúc 7:46

c)

$C=5-x^2+2x-9y^2-6y=5-(x^2-2x)-(9y^2+6y)$

$=7-(x^2-2x+1)-(9y^2+6y+1)=7-(x-1)^2-(3y+1)^2$

Vì $(x-1)^2\geq 0; (3y+1)^2\geq 0$ với mọi $x,y$ nên $C=7-(x-1)^2-(3y+1)^2\leq 7$

Vậy GTLN của $C$ là $7$. Giá trị này đạt được tại $(x-1)^2=(3y+1)^2=0$

$\Leftrightarrow x=1; y=\frac{-1}{3}$

d)

$D=-5x^2-9y^2-7x+18y-2015=-(5x^2+7x)-(9y^2-18y)-2015$

$=-5(x^2+\frac{7}{5}x+\frac{7^2}{10^2})-9(y^2-2y+1)-\frac{40071}{20}$
$=-5(x+\frac{7}{10})^2-9(y-1)^2-\frac{40071}{20}$

$\leq -\frac{40071}{20}$

Vậy GTLN của biểu thức là $\frac{-40071}{20}$ khi $x=-\frac{-7}{10}; y=1$


Khách vãng lai đã xóa
Akai Haruma
31 tháng 10 2020 lúc 7:50

e)

$E=5x^2+y^2-4xy+18x-4y+28=x^2+(4x^2+y^2-4xy)+18x-4y+28$

$=x^2+(2x-y)^2+4(2x-y)+10x+28$

$=(x^2+10x+25)+(2x-y)^2+4(2x-y)+4-1$

$=(x+5)^2+(2x-y+2)^2-1\geq -1$

Vậy GTNN của $E$ là $-1$. Giá trị này xác định tại \(\left\{\begin{matrix} (x+5)^2=0\\ (2x-y+2)^2=0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x=-5\\ y=-8\end{matrix}\right.\)

f)

$F=x^4+x^2-6x+9=(x^4-2x^2+1)+(3x^2-6x+3)+5$
$=(x^4-2x^2+1)+3(x^2-2x+1)+5$

$=(x^2-1)^2+3(x-1)^2+5$

$\geq 5$

Vậy GTNN của $F$ là $5$. Giá trị này đạt được khi $(x^2-1)^2=(x-1)^2=0$

$\Leftrightarrow x=1$

Khách vãng lai đã xóa