Violympic toán 8

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
thngann

Tìm GTNN hoặc GTLN của các biểu thức sau:

Tìm GTNN hoặc GTLN của các biểu thức sau:

a, A= x2-2x+5y2-4y+2020

b, B= (x-5)2-(3x-7)2

c, C=5-x2+2x-9y2-6y

d, D=-5x2-9y2-7x+18y-2015

e, E=5x2+y2-4xy+18x-4y+28

f, F=x4+x2-6x+9

Akai Haruma
31 tháng 10 2020 lúc 7:41

a)

$x^2-2x+5y^2-4y+2020=(x^2-2x+1)+5(y^2-\frac{4}{5}y+\frac{2^2}{5^2})+\frac{10091}{5}$

$=(x-1)^2+5(y-\frac{2}{5})^2+\frac{10091}{5}$

$\geq \frac{10091}{5}$

Vậy GTNN của biểu thức là $\frac{10091}{5}$. Giá trị này đạt được tại $(x-1)^2=(y-\frac{2}{5})^2=0$

$\Leftrightarrow x=1; y=\frac{2}{5}$

b)

\(B=(x-5)^2-(3x-7)^2=(x-5-3x+7)(x-5+3x-7)\)

\(=(2-2x)(4x-12)=8(1-x)(x-3)=8(x-3-x^2+3x)\)

\(=8(4x-3-x^2)=8[1-(x^2-4x+4)]=8[1-(x-2)^2]\)

Vì $(x-2)^2\geq 0, \forall x\in\mathbb{R}$ nên $1-(x-2)^2\leq 1$

$\Rightarrow B=8[1-(x-2)^2]\leq 8$. Vậy GTLN của biểu thức là $8$ khi $x=2$

Khách vãng lai đã xóa
Akai Haruma
31 tháng 10 2020 lúc 7:46

c)

$C=5-x^2+2x-9y^2-6y=5-(x^2-2x)-(9y^2+6y)$

$=7-(x^2-2x+1)-(9y^2+6y+1)=7-(x-1)^2-(3y+1)^2$

Vì $(x-1)^2\geq 0; (3y+1)^2\geq 0$ với mọi $x,y$ nên $C=7-(x-1)^2-(3y+1)^2\leq 7$

Vậy GTLN của $C$ là $7$. Giá trị này đạt được tại $(x-1)^2=(3y+1)^2=0$

$\Leftrightarrow x=1; y=\frac{-1}{3}$

d)

$D=-5x^2-9y^2-7x+18y-2015=-(5x^2+7x)-(9y^2-18y)-2015$

$=-5(x^2+\frac{7}{5}x+\frac{7^2}{10^2})-9(y^2-2y+1)-\frac{40071}{20}$
$=-5(x+\frac{7}{10})^2-9(y-1)^2-\frac{40071}{20}$

$\leq -\frac{40071}{20}$

Vậy GTLN của biểu thức là $\frac{-40071}{20}$ khi $x=-\frac{-7}{10}; y=1$


Khách vãng lai đã xóa
Akai Haruma
31 tháng 10 2020 lúc 7:50

e)

$E=5x^2+y^2-4xy+18x-4y+28=x^2+(4x^2+y^2-4xy)+18x-4y+28$

$=x^2+(2x-y)^2+4(2x-y)+10x+28$

$=(x^2+10x+25)+(2x-y)^2+4(2x-y)+4-1$

$=(x+5)^2+(2x-y+2)^2-1\geq -1$

Vậy GTNN của $E$ là $-1$. Giá trị này xác định tại \(\left\{\begin{matrix} (x+5)^2=0\\ (2x-y+2)^2=0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x=-5\\ y=-8\end{matrix}\right.\)

f)

$F=x^4+x^2-6x+9=(x^4-2x^2+1)+(3x^2-6x+3)+5$
$=(x^4-2x^2+1)+3(x^2-2x+1)+5$

$=(x^2-1)^2+3(x-1)^2+5$

$\geq 5$

Vậy GTNN của $F$ là $5$. Giá trị này đạt được khi $(x^2-1)^2=(x-1)^2=0$

$\Leftrightarrow x=1$

Khách vãng lai đã xóa

Các câu hỏi tương tự
Athena
Xem chi tiết
Xem chi tiết
Thuongphan
Xem chi tiết
Wanna.B Linah
Xem chi tiết
Thỏ Nghịch Ngợm
Xem chi tiết
kiều yến linh
Xem chi tiết
Đỗ Yến Nhi
Xem chi tiết
Trần Thành Vinh
Xem chi tiết
Law Trafargal
Xem chi tiết