a)
$x^2-2x+5y^2-4y+2020=(x^2-2x+1)+5(y^2-\frac{4}{5}y+\frac{2^2}{5^2})+\frac{10091}{5}$
$=(x-1)^2+5(y-\frac{2}{5})^2+\frac{10091}{5}$
$\geq \frac{10091}{5}$
Vậy GTNN của biểu thức là $\frac{10091}{5}$. Giá trị này đạt được tại $(x-1)^2=(y-\frac{2}{5})^2=0$
$\Leftrightarrow x=1; y=\frac{2}{5}$
b)
\(B=(x-5)^2-(3x-7)^2=(x-5-3x+7)(x-5+3x-7)\)
\(=(2-2x)(4x-12)=8(1-x)(x-3)=8(x-3-x^2+3x)\)
\(=8(4x-3-x^2)=8[1-(x^2-4x+4)]=8[1-(x-2)^2]\)
Vì $(x-2)^2\geq 0, \forall x\in\mathbb{R}$ nên $1-(x-2)^2\leq 1$
$\Rightarrow B=8[1-(x-2)^2]\leq 8$. Vậy GTLN của biểu thức là $8$ khi $x=2$
c)
$C=5-x^2+2x-9y^2-6y=5-(x^2-2x)-(9y^2+6y)$
$=7-(x^2-2x+1)-(9y^2+6y+1)=7-(x-1)^2-(3y+1)^2$
Vì $(x-1)^2\geq 0; (3y+1)^2\geq 0$ với mọi $x,y$ nên $C=7-(x-1)^2-(3y+1)^2\leq 7$
Vậy GTLN của $C$ là $7$. Giá trị này đạt được tại $(x-1)^2=(3y+1)^2=0$
$\Leftrightarrow x=1; y=\frac{-1}{3}$
d)
$D=-5x^2-9y^2-7x+18y-2015=-(5x^2+7x)-(9y^2-18y)-2015$
$=-5(x^2+\frac{7}{5}x+\frac{7^2}{10^2})-9(y^2-2y+1)-\frac{40071}{20}$
$=-5(x+\frac{7}{10})^2-9(y-1)^2-\frac{40071}{20}$
$\leq -\frac{40071}{20}$
Vậy GTLN của biểu thức là $\frac{-40071}{20}$ khi $x=-\frac{-7}{10}; y=1$
e)
$E=5x^2+y^2-4xy+18x-4y+28=x^2+(4x^2+y^2-4xy)+18x-4y+28$
$=x^2+(2x-y)^2+4(2x-y)+10x+28$
$=(x^2+10x+25)+(2x-y)^2+4(2x-y)+4-1$
$=(x+5)^2+(2x-y+2)^2-1\geq -1$
Vậy GTNN của $E$ là $-1$. Giá trị này xác định tại \(\left\{\begin{matrix} (x+5)^2=0\\ (2x-y+2)^2=0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x=-5\\ y=-8\end{matrix}\right.\)
f)
$F=x^4+x^2-6x+9=(x^4-2x^2+1)+(3x^2-6x+3)+5$
$=(x^4-2x^2+1)+3(x^2-2x+1)+5$
$=(x^2-1)^2+3(x-1)^2+5$
$\geq 5$
Vậy GTNN của $F$ là $5$. Giá trị này đạt được khi $(x^2-1)^2=(x-1)^2=0$
$\Leftrightarrow x=1$