Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Bùi Minh Quân
Xem chi tiết
Nguyễn Ngọc Diệp
Xem chi tiết
Pham Thi Thoan
Xem chi tiết
Dũng Lê Trí
23 tháng 1 2018 lúc 20:17

Nhận xét : 

Quy luật : 

Mẫu là a thì số số hạng có mẫu a là a - 1 

Mẫu là 2 thì có 1 SH là 1/2

Mẫu là 3 thì có 3 - 1 = 2 số hạng là 1/3 và 2/3

<=> Ta có : 

1 + 2 + 3 +  ... + 10 = 55

Vậy số hạng thứ 60 thuộc dãy số có mẫu là 12 vì số 1 tương ứng với dãy \(M_2\),số 2 tương ứng với dãy \(M_3\)

=> Số 10 tương ứng với dãy \(M_{11}\)

Các số tiếp theo sau dãy \(M_{11}\):

\(M_{11};M_{12}=\frac{1}{11};\frac{2}{11};....;\frac{10}{11};\left(\frac{1}{12};\frac{2}{12};\frac{3}{12};\frac{4}{12};\frac{5}{12}\right);.....\)

Số hạng thứ 60 là số 5/12

jaki natsumi
24 tháng 1 2018 lúc 20:43

so thu 60 la 5/12

 Gouenji Shuuya
12 tháng 3 2018 lúc 9:20

số hạn số 60 là số 5/12

👁💧👄💧👁
Xem chi tiết
Nguyễn Xuân Đình Lực
Xem chi tiết
Natsu Dragneel
17 tháng 2 2020 lúc 8:38

Ta có :

\(A=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{9^2}\)

\(\Rightarrow A>\frac{1}{2^2}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{9.10}\)

\(\Leftrightarrow A>\frac{1}{2^2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{9}-\frac{1}{10}\)

\(=\frac{1}{2^2}+\frac{1}{3}-\frac{1}{10}=\frac{29}{60}\left(1\right)\)

Lại có :

\(A< \frac{1}{2^2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{8.9}\)

\(\Leftrightarrow A< \frac{1}{2^2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{8}-\frac{1}{9}\)

\(=\frac{1}{2^2}+\frac{1}{2}-\frac{1}{9}=\frac{23}{36}\left(2\right)\)

\(\frac{23}{36}< \frac{24}{36}=\frac{2}{3}\left(3\right)\)

Từ (1), (2) và (3) suy ra \(\frac{29}{60}< A< \frac{2}{3}\)

Khách vãng lai đã xóa
Ngô Huy Hiếu
Xem chi tiết
Kudo Shinichi
Xem chi tiết
Thanh Tùng DZ
1 tháng 6 2018 lúc 9:01

Câu hỏi của Hoàng Đỗ Việt - Toán lớp 6 | Học trực tuyến

Trịnh Sảng và Dương Dươn...
1 tháng 6 2018 lúc 9:45

Bài 1 :

Ta có;\(\frac{1}{21}+\frac{1}{22}+\frac{1}{23}+...+\frac{1}{30}>\frac{1}{30}.10=\frac{1}{3}\)

\(\frac{1}{31}+\frac{1}{32}+...+\frac{1}{60}>\frac{1}{60}.30>\frac{1}{30}.24=\frac{2}{5}\)

Do đó :

\(\frac{1}{21}+\frac{1}{22}+...+\frac{1}{60}>\frac{1}{3}+\frac{2}{5}=\frac{11}{15}\left(1\right)\)

Mặt khác :

\(\frac{1}{21}+\frac{1}{22}+...+\frac{1}{40}< \frac{1}{20}.20=1\)

\(\frac{1}{41}+\frac{1}{42}+...+\frac{1}{60}< \frac{1}{40}.20=\frac{1}{2}\)

Do đó :

\(\frac{1}{21}+\frac{1}{22}+...+\frac{1}{60}< 1+\frac{1}{2}=\frac{3}{2}\left(2\right)\)

Từ (1 ) và (2) ta suy ra điều phải chứng minh

Bài 2 : 

Đặt \(S=1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{63}\)

MỘT MẶT ,TA CÓ THỂ VIẾT

\(S=\left(1+\frac{1}{2}\right)+\left(\frac{1}{3}+\frac{1}{4}\right)+\left(\frac{1}{5}+\frac{1}{6}+\frac{1}{7}+\frac{1}{8}\right)\)\(+\left(\frac{1}{9}+\frac{1}{10}+...+\frac{1}{16}\right)+\left(\frac{1}{17}+\frac{1}{18}+...+\frac{1}{32}\right)\)\(+\left(\frac{1}{33}+\frac{1}{34}+...+\frac{1}{63}+\frac{1}{64}\right)-\frac{1}{64}\)

\(>\frac{1}{2}.2+\frac{1}{4}.2+\frac{1}{8}.4+\frac{1}{16}.8+\frac{1}{32}.16+\frac{1}{64}.32-\frac{1}{64}\)\(=\frac{7}{2}-\frac{1}{64}=\frac{223}{64}>\frac{192}{64}=3\left(1\right)\)

Mặt khác ,ta lại có\(S=1+\left(\frac{1}{2}+\frac{1}{3}\right)+\left(\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+\frac{1}{7}\right)\)\(+\left(\frac{1}{8}+\frac{1}{9}+...+\frac{1}{15}\right)+\left(\frac{1}{16}+\frac{1}{17}+...+\frac{1}{31}\right)\)\(+\left(\frac{1}{32}+\frac{1}{33}+...+\frac{1}{63}\right)< \)\(1+\frac{1}{2}.2+\frac{1}{4}.4+\frac{1}{8}.8+\frac{1}{16}.16+\frac{1}{32}.32=6\left(2\right)\)

Từ (1) và (2 ) ta kết luận \(3< S< 6\)

Chúc bạn học tốt ( -_- )

Duc Loi
1 tháng 6 2018 lúc 9:57

a) Đặt \(A=\frac{1}{21}+\frac{1}{22}+\frac{1}{23}+...+\frac{1}{59}+\frac{1}{60}\)

Ta có:

\(A=\left(\frac{1}{21}+\frac{1}{22}+...+\frac{1}{40}\right)+\left(\frac{1}{41}+\frac{1}{42}+...+\frac{1}{60}\right)\)

+ Vì \(\frac{1}{21}>\frac{1}{40};\frac{1}{22}>\frac{1}{40};...;\frac{1}{40}=\frac{1}{40}\)

\(\Rightarrow\frac{1}{21}+\frac{1}{22}+...+\frac{1}{40}>\frac{1}{40}+\frac{1}{40}+...+\frac{1}{40}\)( 20 phân số \(\frac{1}{40}\)\(=20.\frac{1}{40}=\frac{1}{2}.\)

+ Vì \(\frac{1}{41}>\frac{1}{60};\frac{1}{42}>\frac{1}{60};...;\frac{1}{60}=\frac{1}{60}\)

\(\Rightarrow\frac{1}{41}+\frac{1}{42}+...+\frac{1}{60}>\frac{1}{60}+\frac{1}{60}+...+\frac{1}{60}\)( 20 phân số \(\frac{1}{60}\)\(=20.\frac{1}{60}=\frac{1}{3}\)

\(\Rightarrow A>\frac{1}{2}+\frac{1}{3}=\frac{5}{6}=\frac{75}{90}>\frac{66}{90}=\frac{11}{15}\)

\(\Rightarrow A>\frac{11}{15}\left(1\right)\)

Lại có: 

+ Vì \(\frac{1}{21}< \frac{1}{20};\frac{1}{22}< \frac{1}{20};...;\frac{1}{40}< \frac{1}{20}\)

\(\Rightarrow\frac{1}{21}+\frac{1}{22}+...+\frac{1}{40}< \frac{1}{20}+\frac{1}{20}+...+\frac{1}{20}\)( 20 phân số \(\frac{1}{20}\)\(=20.\frac{1}{20}=1\)

+ Vì \(\frac{1}{41}< \frac{1}{40};\frac{1}{42}< \frac{1}{40};...;\frac{1}{60}< \frac{1}{40}\)

\(\Rightarrow\frac{1}{41}+\frac{1}{42}+...+\frac{1}{60}< \frac{1}{40}+\frac{1}{40}+...+\frac{1}{40}\)( 20 phân số \(\frac{1}{40}\)\(=20.\frac{1}{40}=\frac{1}{2}\)

\(\Rightarrow A< 1+\frac{1}{2}=\frac{3}{2}\)

\(\Rightarrow A< \frac{3}{2}\left(2\right)\)

Từ\(\left(1\right)\);\(\left(2\right)\) \(\Rightarrow\frac{11}{15}< A< \frac{3}{2}\left(đpcm\right).\)

b) Đặt \(B=1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{63}\)

Ta có:

\(B=1+\left(\frac{1}{2}+\frac{1}{3}\right)+\left(\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+\frac{1}{7}\right)+\left(\frac{1}{8}+\frac{1}{9}+...+\frac{1}{15}\right)\)\(+\left(\frac{1}{16}+\frac{1}{17}+...+\frac{1}{31}\right)+\left(\frac{1}{32}+\frac{1}{33}+...+\frac{1}{63}\right)\)

\(1=1\)

+\(\frac{1}{2}+\frac{1}{3}< \frac{1}{2}+\frac{1}{2}=1\)

+\(\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+\frac{1}{7}< \frac{1}{4}+\frac{1}{4}+\frac{1}{4}+\frac{1}{4}=1\)

+\(\frac{1}{8}+\frac{1}{9}+...+\frac{1}{15}< \frac{1}{8}+\frac{1}{8}+...+\frac{1}{8}=1\)

Tương tự ta được:

+\(\frac{1}{16}+\frac{1}{17}+...+\frac{1}{31}< 1\)

+\(\frac{1}{32}+\frac{1}{33}+...+\frac{1}{63}< 1\)

\(\Rightarrow A< 1+1+1+1+1+1=6\left(1\right)\)

Lại có:

+\(1=1\)

+\(\frac{1}{2}+\frac{1}{3}>\frac{1}{3}+\frac{1}{3}=\frac{2}{3}\)

+\(\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+\frac{1}{7}>\frac{1}{7}+\frac{1}{7}+\frac{1}{7}+\frac{1}{7}=\frac{4}{7}\)

+\(\frac{1}{8}+\frac{1}{9}+...+\frac{1}{15}>\frac{1}{15}+\frac{1}{15}+...+\frac{1}{15}=\frac{8}{15}\)

Tương tự, ta được:

+\(\frac{1}{16}+\frac{1}{17}+...+\frac{1}{31}>\frac{16}{31}\)

+\(\frac{1}{32}+\frac{1}{33}+...+\frac{1}{63}< \frac{32}{63}\)

\(\Rightarrow A>1+\frac{2}{3}+\frac{4}{7}+\frac{8}{15}+\frac{16}{31}+\frac{32}{63}\)\(=1+\frac{18}{15}+\frac{64}{63}+\frac{16}{31}>1+\frac{15}{15}+\frac{63}{63}=3\left(2\right)\)

Từ\(\left(1\right)\)và \(\left(2\right)\Rightarrow3< A< 6\left(đpcm\right).\)

Hoàng Mai Trang
Xem chi tiết
Nguyễn Xuân Đình Lực
Xem chi tiết