sin \(\dfrac{A}{2}\)=\(\sqrt{\dfrac{b-c}{2b}}\) nhận dạng tam giác ABC biết
Nhận dạng tam giác ABC biết
\(\dfrac{1+\cos B}{\sin B}=\dfrac{2a+c}{\sqrt{4a^2-c^2}}\)
Lời giải:
\(\frac{1+\cos B}{\sin B}=\frac{2a+c}{\sqrt{(2a-c)(2a+c)}}\)
\(\Rightarrow \frac{(1+\cos B)^2}{\sin ^2B}=\frac{2a+c}{2a-c}\) (bình phương 2 vế)
\(\Leftrightarrow \frac{1+\cos ^2B+2\cos B}{\sin ^2B}=\frac{2a-c+2c}{2a-c}\)
\(\Leftrightarrow \frac{\sin ^2B+2\cos ^2B+2\cos B}{\sin ^2B}=1+\frac{2c}{2a-c}\)
\(\Leftrightarrow \frac{\cos ^2B+\cos B}{\sin ^2B}=\frac{c}{2a-c}\)
\(\Rightarrow (2a-c)(\cos ^2B+\cos B)=c\sin ^2B\)
\(\Leftrightarrow 2a\cos ^2B+(2a-c)\cos B=c\sin ^2B+c\cos ^2B=c(\sin ^2B+\cos ^2B)=c\)
\(\Leftrightarrow 2a(\cos ^2B+\cos B)=c(\cos B+1)\)
\(\Leftrightarrow (\cos B+1)(2a\cos B-c)=0\)
Với mọi \(\widehat{B}< 180^0\Rightarrow \cos B+1\neq 0\). Suy ra \(2a\cos B-c=0\Rightarrow \cos B=\frac{c}{2a}\)
Kẻ đường cao $CH$ xuống $AB$
\(\cos B=\frac{BH}{BC}=\frac{BH}{a}=\frac{c}{2a}\)
\(\Rightarrow BH=\frac{c}{2}\) hay $H$ là trung điểm của $AB$. Vậy $CH$ đồng thời là đường cao và đường trung tuyến, suy ra tam giác $ABC$ cân tại $C$
Cho tam giác ABC nhọn .Tìm min của :
\(T=\sqrt{sin^2A+\dfrac{1}{cos^2B}}+\sqrt{sin^2B+\dfrac{1}{cos^2C}}+\sqrt{sin^2C+\dfrac{1}{cos^2A}}\)
Cho tam giác ABC, chứng minh rằng:
a) \(Sin\dfrac{A}{2}+Sin\dfrac{B}{2}+Sin\dfrac{C}{2}\le\dfrac{3}{2}\)
b) \(SinA+SinB+SinC\le\dfrac{3\sqrt{3}}{2}\)
Ta có: A = \(sin\dfrac{A}{2}+sin\dfrac{B}{2}+sin\dfrac{C}{2}=cos\dfrac{B+C}{2}+2sin\dfrac{B+C}{4}cos\dfrac{B-C}{4}\)
\(\Leftrightarrow A-2sin\dfrac{B+C}{4}cos\dfrac{B-C}{4}-cos^2\dfrac{B+C}{4}+sin^2\dfrac{B+C}{4}=0\)\(\Leftrightarrow A-2sin\dfrac{B+C}{4}cos\dfrac{B-C}{4}+2sin^2\dfrac{B+C}{4}-1=0\)
Δ' = \(cos^2\dfrac{B-C}{4}-2\left(A-1\right)\ge0\)
\(\Rightarrow A-1\le\dfrac{1}{2}\Leftrightarrow A\le\dfrac{3}{2}\)
Nhận dạng tam giác ABC biết:
1) S = \(\dfrac{1}{6}\) (c.ha + b.hc + a.hc)
2) 2(a2 + b2 + c2) = a(b2 + c2) + b(c2 + a2) + c(a2 + b2)
3) ha + hb + hc =9r
4) \(\dfrac{sinA}{1}=\dfrac{sinB}{\sqrt{3}}=\dfrac{sinC}{2}\)
1.
Sửa đề: \(S=\dfrac{1}{6}\left(ch_a+bh_c+ah_b\right)\)
\(a.h_a=b.h_b=c.h_c=2S\Rightarrow\left\{{}\begin{matrix}h_a=\dfrac{2S}{a}\\h_b=\dfrac{2S}{b}\\h_c=\dfrac{2S}{c}\end{matrix}\right.\)
\(\Rightarrow6S=\dfrac{2Sc}{a}+\dfrac{2Sb}{c}+\dfrac{2Sa}{b}\)
\(\Leftrightarrow\dfrac{a}{b}+\dfrac{b}{c}+\dfrac{c}{a}=3\)
Mặt khác theo AM-GM: \(\dfrac{a}{b}+\dfrac{b}{c}+\dfrac{c}{a}\ge3\sqrt[3]{\dfrac{abc}{abc}}=3\)
Dấu "=" xảy ra khi và chỉ khi \(a=b=c\)
\(\Leftrightarrow\) Tam giác đã cho đều
2.
Bạn coi lại đề, biểu thức câu này rất kì quặc (2 vế không đồng bậc)
Ở vế trái là \(2\left(a^2+b^2+c^2\right)\) hay \(2\left(a^3+b^3+c^3\right)\) nhỉ?
3.
Theo câu a, ta có:
\(VT=\dfrac{2S}{a}+\dfrac{2S}{b}+\dfrac{2S}{c}\ge\dfrac{18S}{a+b+c}=\dfrac{18.pr}{a+b+c}=9r\)
Dấu "=" xảy ra khi và chỉ khi \(a=b=c\)
Hay tam giác đã cho đều
4.
Theo định lý hàm sin: \(\left\{{}\begin{matrix}sinA=\dfrac{a}{2R}\\sinB=\dfrac{b}{2R}\\sinC=\dfrac{c}{2R}\end{matrix}\right.\)
\(\Rightarrow\dfrac{a}{2R}=\dfrac{b}{2\sqrt{3}R}=\dfrac{c}{4R}\)
\(\Leftrightarrow a=\dfrac{b}{\sqrt{3}}=\dfrac{c}{2}\)
\(\Rightarrow\left\{{}\begin{matrix}a=\dfrac{c}{2}\\b=\dfrac{c\sqrt{3}}{2}\end{matrix}\right.\)
\(\Rightarrow a^2+b^2=\dfrac{c^2}{4}+\dfrac{3c^2}{4}=c^2\)
\(\Rightarrow\Delta ABC\) vuông tại C theo Pitago đảo
Cho tam giác ABC vuông tại A có BC = a, CA = b, AB = c, đường cao AH.
a) Chứng minh: \(1+tam^2B=\dfrac{1}{cos^2B};tan\dfrac{C}{2}=\dfrac{c}{a+b}\)
b) Chứng minh: AH = a. sin B. cos B, BH=a·cos2B, CH=a·sin2B
c) Lấy D trên cạnh AC. Kẻ DE vuông góc BC tại E. Chứng minh:
sinB=\(\dfrac{AB\cdot AD+EB\cdot ED}{AB\cdot BE+DA\cdot DE}\) (
a) \(1+tan^2B=1+\dfrac{AC^2}{AB^2}=\dfrac{AB^2+AC^2}{AB^2}=\dfrac{BC^2}{AB^2}=\dfrac{1}{\left(\dfrac{AB}{BC}\right)^2}=\dfrac{1}{cos^2B}\)
b) Ta có: \(a.sinB.cosB=BC.\dfrac{AC}{BC}.\dfrac{AB}{BC}=\dfrac{AC.AB}{BC}=\dfrac{AH.BC}{BC}=AH\)
\(AB^2=BH.BC\Rightarrow BH=\dfrac{AB^2}{BC}=BC.\left(\dfrac{AB}{BC}\right)^2=BC.cos^2B\)
Tương tự \(\Rightarrow CH=BC.sin^2B\)
nhận diện tam giác thỏa mãn: \(sin\dfrac{B}{2}=\dfrac{b}{2\sqrt{ac}}\)
\(sin\dfrac{B}{2}=\dfrac{b}{2\sqrt{ac}}\Rightarrow sin^2\dfrac{B}{2}=\dfrac{b^2}{4ac}\Rightarrow\dfrac{1-cosB}{2}=\dfrac{b^2}{4ac}\)
\(\Rightarrow1-\dfrac{a^2+c^2-b^2}{2ac}=\dfrac{b^2}{2ac}\Rightarrow2ac-a^2-c^2+b^2=b^2\)
\(\Rightarrow-\left(a-c\right)^2=0\Rightarrow a=c\)
\(\Rightarrow\Delta ABC\) cân tại B
chứng minh rằng tam giác ABC
cos \(\dfrac{3A+2B+C}{2}\)= -sin \(\left(A+\dfrac{B}{2}\right)\)
ΔABC có góc A+góc B+góc C=180 độ
=>3*góc A+2*góc B+góc C=180 độ+2*góc A+góc B
=>\(\dfrac{3A+2B+C}{2}=90^0+A+\dfrac{B}{2}\)
=>\(cos\left(\dfrac{3A+2B+C}{2}\right)=-sin\left(A+\dfrac{B}{2}\right)\)
cho A là một góc trong tam giác ABC. Biểu thức M=sin A + \(\sqrt{3}\) cos A không thể nhận giá trị nào sau đây
A.1
B.\(\sqrt{3}\)
C.2\(\sqrt{3}\)
D.\(\dfrac{-\sqrt{5}}{2}\)
Lời giải:
Theo BĐT Bunhiacopxky ta có:
$M^2=(\sin A+\sqrt{3}\cos A)^2\leq (\sin ^2A+\cos ^2A)(1+3)=1.4=4$
$\Rightarrow -2\leq M\leq 2$
Do đó $M$ không thể nhận giá trị $2\sqrt{3}$ vì $2\sqrt{3}>2$
Đáp án C.
Cho tam giác ABC. Chứng minh \(\dfrac{\sin^3\dfrac{B}{2}}{\cos\left(\dfrac{A+C}{2}\right)}\)+ \(\dfrac{\cos^3\dfrac{B}{2}}{sin\left(\dfrac{A+C}{2}\right)}\)-\(\dfrac{\cos\left(A-C\right)}{\sin B}\).\(\tan B=2\)