Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Linh
Xem chi tiết
Nguyễn Việt Lâm
14 tháng 1 2024 lúc 14:45

Ta có:

\(\dfrac{1}{a+b}+\dfrac{1}{b+c}\ge\dfrac{4}{a+2b+c}\ge\dfrac{4}{\dfrac{a^2+1}{2}+b^2+1+\dfrac{c^2+1}{2}}=\dfrac{8}{b^2+7}\)

Tương tự

\(\dfrac{1}{a+b}+\dfrac{1}{a+c}\ge\dfrac{8}{a^2+7}\)

\(\dfrac{1}{b+c}+\dfrac{1}{a+c}\ge\dfrac{8}{c^2+7}\)

Cộng vế:

\(2\left(\dfrac{1}{a+b}+\dfrac{1}{b+c}+\dfrac{1}{c+a}\right)\ge\dfrac{8}{a^2+7}+\dfrac{8}{b^2+7}+\dfrac{8}{c^2+7}\)

\(\Rightarrow\dfrac{1}{a+b}+\dfrac{1}{b+c}+\dfrac{1}{c+a}\ge\dfrac{4}{a^2+7}+\dfrac{4}{b^2+7}+\dfrac{4}{c^2+7}\)

Dấu "=" xảy ra khi \(a=b=c=1\)

Đặng Phương
Xem chi tiết
Nguyễn Thị Trúc Hà
Xem chi tiết
Thu Thao
27 tháng 5 2021 lúc 15:07

Có điều kiện gì của a,b,c không ạ?

missing you =
28 tháng 5 2021 lúc 5:55

\(\dfrac{a^2}{b+c}+\dfrac{b^2}{a+c}+\dfrac{c^2}{a+b}\) (a,b,c thực dương)

=\(\dfrac{a^2}{b+c}+\dfrac{b+c}{4}+\dfrac{b^2}{a+c}+\dfrac{a+c}{4}+\dfrac{c^2}{a+b}+\dfrac{a+b}{4}\)

\(-\left(\dfrac{b+c}{4}+\dfrac{a+c}{4}+\dfrac{a+b}{4}\right)\)

áp dụng BDT Cô si =>\(\dfrac{a^2}{b+c}+\dfrac{b+c}{4}\ge a\)

tương tự : \(\dfrac{b^2}{a+c}+\dfrac{a+c}{4}\ge b\)

\(\dfrac{c^2}{a+b}+\dfrac{a+b}{4}\ge c\)

=>\(\dfrac{a^2}{b+c}+\dfrac{b+c}{4}+\dfrac{b^2}{a+c}+\dfrac{a+c}{4}+\dfrac{c^2}{a+b}+\dfrac{a+b}{4}\)

-\(-\left(\dfrac{b+c}{4}+\dfrac{a+c}{4}+\dfrac{a+b}{4}\right)\ge a+b+c-\dfrac{a+b+c}{2}\)

=\(\dfrac{a+b+c}{2}\left(dpcm\right)\)

Lê Trần Nam Khánh
Xem chi tiết
Akai Haruma
9 tháng 9 2023 lúc 18:56

Lời giải:
Áp dụng BĐT Cô-si cho các số dương ta có:
$a^2+1\geq 2a$

$b^2+1\geq 2b$

$c^2+1\geq 2c$

$\Rightarrow a^2+b^2+c^2+3\geq 2(a+b+c)=4+a+b+c$

$\Rightarrow a^2+b^2+c^2\geq a+b+c+1> a+b+c$ (đpcm)

๖ۣۜDũ๖ۣۜN๖ۣۜG
Xem chi tiết
Nguyễn Việt Lâm
24 tháng 4 2021 lúc 21:37

- Nếu \(abc\ge0\Rightarrow a^2+b^2+c^2+abc\ge0\) dấu "=" xảy ra khi và chỉ khi \(a=b=c=0\)

- Nếu \(abc< 0\Rightarrow\)  trong 3 số a; b; c có ít nhất 1 số âm

Không mất tính tổng quát, giả sử \(c< 0\Rightarrow ab>0\)

Mà \(\left\{{}\begin{matrix}-2\le c< 0\\ab>0\end{matrix}\right.\Leftrightarrow abc\ge-2ab\)

\(\Rightarrow a^2+b^2+c^2+abc\ge a^2+b^2-2ab+c^2=\left(a-b\right)^2+c^2>0\) (không thỏa mãn)

Vậy \(a=b=c=0\)

Vũ Đình Nguyên
Xem chi tiết
Mr Lazy
8 tháng 8 2016 lúc 16:53

B2: \(\left(a+b+c\right)^2=a^2+b^2+c^2+2\left(ab+bc+ca\right)=4\)

\(\Rightarrow\orbr{\begin{cases}a+b+c=2\\a+b+c=-2\end{cases}}\)

TH1: \(a+b+c=2\Rightarrow c=2-\left(a+b\right)\)

\(a^2+b^2+c^2=2\)\(\Leftrightarrow a^2+b^2+\left(2-a-b\right)^2=2\)

\(\Leftrightarrow a^2+b^2+ab-2\left(a+b\right)+1=0\)

\(\Leftrightarrow a^2+\left(b-2\right)a+b^2-2b+1=0\)

Xem đây là một phương trình bậc hai ẩn a, tham số b.

Để tồn tại a thỏa phương trình trên thì \(\Delta\ge0\)

\(\Leftrightarrow\left(b-2\right)^2-4\left(b^2-2b+1\right)\ge0\)

\(\Leftrightarrow b\left(3b-4\right)\le0\)\(\Leftrightarrow0\le b\le\frac{4}{3}\)

Do vai trò của a, b, c là như nhau nên \(0\le a,b,c\le\frac{4}{3}\)

(hoặc đổi biến thành b và tham số a --> CM được a, rồi thay \(b=2-c-a\) sẽ chứng minh được c)

TH2: \(a+b+c=-2\) --> tương tự trường hợp 1 nhưng kết quả sẽ là 

\(-\frac{4}{3}\le a,b,c\le0\)

Kết hợp 2 trường hợp lại, ta có đpcm.

Vũ Thị Như Quỳnh
8 tháng 10 2016 lúc 20:29

dễ quá 

dễ quá

mình biêt s

làm đó

Hoang Yen Pham
Xem chi tiết
Yeutoanhoc
14 tháng 7 2021 lúc 8:53

`1)(a+b+c)^2=3(a^2+b^2+c^2)`

`<=>a^2+b^2+c^2+2ab+2bc+2ca=3a^2+3b^2+3c^2`

`<=>2ab+2bc+2ca=2a^2+2b^2+2c^2`

`<=>a^2-2ab+b^2+b^2-2bc+c^2+c^2-2ca+a^2=0`

`<=>(a-b)^2+(b-c)^2+(c-a)^2=0`

Mà `(a-b)^2+(b-c)^2+(c-a)^2>=0`

Vậy dấu "=" xảy ra chỉ có thể là `a=b=c`

`2)(a+b+c)^2=3(ab+bc+ca)`

`<=>a^2+b^2+c^2+2ab+2bc+2ca=3ab+3bc+3ca`

`<=>a^2+b^2+c^2=ab+bc+ca`

`<=>2ab+2bc+2ca=2a^2+2b^2+2c^2`

`<=>a^2-2ab+b^2+b^2-2bc+c^2+c^2-2ca+a^2=0`

`<=>(a-b)^2+(b-c)^2+(c-a)^2=0`

Mà `(a-b)^2+(b-c)^2+(c-a)^2>=0`

Vậy dấu "=" xảy ra chỉ có thể là `a=b=c`

Vậy nếu `a=b=c` thì ....

Nguyễn Huy Tú
14 tháng 7 2021 lúc 8:56

undefined

Nguyễn Lê Phước Thịnh
14 tháng 7 2021 lúc 15:13

1) Ta có: \(3\left(a^2+b^2+c^2\right)=\left(a+b+c\right)^2\)

\(\Leftrightarrow3a^2+3b^2+3c^2-a^2-b^2-c^2-2ab-2bc-2ac=0\)

\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(a^2-2ac+c^2\right)+\left(b^2-2bc+c^2\right)=0\)

\(\Leftrightarrow\left(a-b\right)^2+\left(a-c\right)^2+\left(b-c\right)^2=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}a=b\\a=c\\b=c\end{matrix}\right.\Leftrightarrow a=b=c\)

Nguyễn Trần Thanh Loan
Xem chi tiết
LƯƠNG VŨ HÀ CHI
18 tháng 2 2020 lúc 14:38

86 vì ta học lớp 9

Khách vãng lai đã xóa
Kiệt Nguyễn
18 tháng 2 2020 lúc 14:38

Ta có: \(a\left(b^2-1\right)\left(c^2-1\right)+b\left(a^2-1\right)\left(c^2-1\right)+c\left(a^2-1\right)\left(b^2-1\right)\)

\(=a\left(b^2c^2-b^2-c^2+1\right)+b\left(a^2c^2-a^2-c^2+1\right)\)

\(+c\left(a^2b^2-a^2-b^2+1\right)\)

\(=ab^2c^2-ab^2-ac^2+a+ba^2c^2-a^2b-bc^2+b\)

\(+ca^2b^2-a^2c-b^2c+c\)

\(=\left(ab^2c^2+ba^2c^2+ca^2b^2\right)+\left(a+b+c\right)\)

\(-\left(ab^2+ac^2+a^2b+bc^2+a^2c+b^2c\right)\)

\(=abc\left(bc+ac+ab\right)+\left(a+b+c\right)\)\(-\left[ab\left(a+b\right)+bc\left(b+c\right)+ca\left(c+a\right)\right]\)

\(=abc\left(bc+ac+ab\right)+\left(a+b+c\right)+3abc\)\(-\left[ab\left(a+b+c\right)+bc\left(a+b+c\right)+ca\left(a+b+c\right)\right]\)

\(=abc\left(bc+ac+ab\right)+\left(a+b+c\right)+3abc\)\(-\left(a+b+c\right)\left(ab+bc+ca\right)\)

\(=abc\left(bc+ac+ab\right)+abc+3abc\)\(-abc\left(ab+bc+ca\right)=4abc\)

Vậy \(a\left(b^2-1\right)\left(c^2-1\right)+b\left(a^2-1\right)\left(c^2-1\right)+c\left(a^2-1\right)\left(b^2-1\right)=4abc\)(đpcm)

Khách vãng lai đã xóa
TrịnhAnhKiệt
Xem chi tiết
Toru
6 tháng 8 2023 lúc 11:58

Có : a + b + c = 0

=> (a + b)5 = (-c)5

      a5 + 5a4b + 10a3b+ 10a2b3 + 5ab4 + b5 = -c5

      a5 + b5 + c5 = -5a4b - 10a3b2 - 10a2b3 - 5ab4

       a5 + b5 + c5 = -5ab(a3 + 2a2b + 2ab2 + b3)

      a5 + b5 + c= -5ab[(a3 + b3) + (2a2b + 2ab2)]

      a5 + b5 + c5 = -5ab[(a + b)(a2 - ab + b2) + 2ab(a + b)]

      a5 + b5 + c5 = -5ab(a + b)(a2 + b2 + ab)  

      a5 + b5 + c5 = 5abc(a2 + b2 + ab)   (do a+b+c=0=> a+b=-c)

      2(a5 + b5 + c5) = 5abc(2a2 + 2b2 + 2ab)

      2(a5 + b5 + c5) = 5abc[a2 + b2 +(a2 + 2ab + b2)]

      2(a5 + b5 + c5) = 5abc[a2 + b2 + (a + b)2]

      2(a5 + b5 + c5) = 5abc(a2 + b2 + c2)    (do a+b=-c=> (a +b )2 = c2

    \(\Leftrightarrow\) \(a^5+b^5+c^5=\dfrac{5}{2}abc\left(a^2+b^2+c^2\right)\)

Vậy...

JOKER_Mizukage Đệ tứ
Xem chi tiết