Lời giải:
Áp dụng BĐT Cô-si cho các số dương ta có:
$a^2+1\geq 2a$
$b^2+1\geq 2b$
$c^2+1\geq 2c$
$\Rightarrow a^2+b^2+c^2+3\geq 2(a+b+c)=4+a+b+c$
$\Rightarrow a^2+b^2+c^2\geq a+b+c+1> a+b+c$ (đpcm)
Lời giải:
Áp dụng BĐT Cô-si cho các số dương ta có:
$a^2+1\geq 2a$
$b^2+1\geq 2b$
$c^2+1\geq 2c$
$\Rightarrow a^2+b^2+c^2+3\geq 2(a+b+c)=4+a+b+c$
$\Rightarrow a^2+b^2+c^2\geq a+b+c+1> a+b+c$ (đpcm)
Cho a,b,c>0 a2+b2+c2=3 Cmr: 1/(a+b) + 1/(b+c) + 1/(c+a) ≥ 4/(a2+7) + 4/(b2+7) + 4/(c2+7)
cho a,b,c khác 0 ; a+b+c=0 tính a=1/(a2+b2-c2)+1/(b2+c2-a2)+1/(a2+c2-b2)
B1:Cho a>0, a2=bc
a+b+c=abc
Cmr:
a lớn hơn hoặc bằng căn3,b>0,c>0,b2+c2 lớn hơn hoặc bằng 2a2
B2: Cho hệ
a2+b2+c2=2
ab+bc+ca=1
Cmr: a,b,c thuộc {-4/3;4/3}
B1:Cho a>0, a2=bc a+b+c=abc
Cmr: a lớn hơn hoặc bằng căn 3,b>0,c>0,b2+c2 lớn hơn hoặc bằng 2a2
B2: Cho hệ
a2+b2+c2=2
ab+bc+ca=1
Cmr: a,b,c thuộc {-4/3;4/3}
Trả lời giúp mk với .. tối mk học lẹ rồi
Thanks các bạn nhiều
Cho các số thực a,b,c thỏa mãn a+b+c=0,a2+b2\(\ne\)c2,b2+c2\(\ne\)a2,c2+a2\(\ne\)b2.Tính giá trị biểu thức P=\(\dfrac{a^2}{a^2-b^2-c^2}\)+\(\dfrac{b^2}{b^2-c^2-a^2}\)+\(\dfrac{c^2}{c^2-a^2-b^2}\)
Cho a, b, c là các số thực thỏa mãn ab+bc+ca=3. CMR:
(a2+2)(b2+2)(c2+2)-18 ≥ 3(a2+b2+c2)
cho a,b,c>0, a+b+c=3. cm abc(a2+b2+c2)≤3
cho a,b,c>0,a+b+c=1 tìm max F=abc(a2+b2+c2)
cho a,b,c là 3 số dương thỏa mãn: a+b+c=2019. Tìm GTNN : a3/a2+b2+ab + b3/b2+c2+bc + c3/c2+a2+ca