a,(x-7).(2x-8)=0
b,(x-1)^6=(x-1)^8
tìm x biết :
a,(2x+ 4/5) (3x-1/2)= 0
b,(x-2/5) (x+4/7)= 0
c,-1 =|x- 5/6|= 1/2
d,x+ 5/8 x- 12/16x= 1
a. 2x+\(\dfrac{4}{5}\)=0 hoặc 3x-\(\dfrac{1}{2}\)=0
2x=- 4/5 hoặc 3x=1/2
x=-2/5 hoặc x=\(\dfrac{1}{6}\)
b. x-\(\dfrac{2}{5}\)=0 hoặc x+\(\dfrac{4}{7}\)=0
x=2/5 hoặc x=-\(\dfrac{4}{7}\)
d. x(1+5/8-12/16)=1
\(\dfrac{7}{8}\)x=1=> x=8/7
Giải các phương trình:
a) (x - 7)(2x + 8) = 0
b) (3x +1)(5x - 2) = 0
c) (x - 1)(2x + 7)(x2 + 2) = 0
d) (2x - 1)(x + 8)(x - 5) = 0
a) (x - 7)(2x + 8) = 0
\(\Leftrightarrow\left[{}\begin{matrix}x-7=0\\2x+8=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=7\\2x=-8\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=7\\x=-4\end{matrix}\right.\)
Vậy: S = {7; -4}
b) Tương tự câu a
c) (x - 1)(2x + 7)(x2 + 2) = 0
\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\2x+7=0\\x^2+2=0\end{matrix}\right.\)
Mà: x2 + 2 > 0 với mọi x
\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\2x+7=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\2x=-7\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-\dfrac{7}{2}\end{matrix}\right.\)
Vậy: \(S=\left\{1;-\dfrac{7}{2}\right\}\)
d) (2x - 1)(x + 8)(x - 5) = 0
\(\Leftrightarrow\left[{}\begin{matrix}2x-1=0\\x+8=0\\x-5=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}2x=1\\x=-8\\x=5\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{2}\\x=-8\\x=5\end{matrix}\right.\)
Vậy \(S=\left\{\dfrac{1}{2};-8;5\right\}\)
a/ Pt \(\Leftrightarrow\left[{}\begin{matrix}x-7=0\\2x+8=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=7\\x=-4\end{matrix}\right.\)
Vậy \(S=\left\{7;-4\right\}\)
b/ pt \(\Leftrightarrow\left[{}\begin{matrix}3x+1=0\\5x-2=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{1}{3}\\x=\dfrac{2}{5}\end{matrix}\right.\)
c/ pt \(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\2x+7=0\end{matrix}\right.\) (\(x^2+2>0\forall x\))\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-\dfrac{7}{2}\end{matrix}\right.\)
d/ pt \(\Leftrightarrow\left[{}\begin{matrix}2x-1=0\\x+8=0\\x-5=0\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{2}\\x=-8\\x=5\end{matrix}\right.\)
a)(x-7)(2x+8)=0
⇔x-7=0 hoặc 2x+8=0
1.x-7=0⇔x=7
2.2x+8=0⇔2x=-8⇔x=-4
phương trình có 1 nghiệm x=7 và x=-4
b)(3x+1)(5x-2)=0
⇔3x+1=0 hoặc 5x-2=0
1.3x+1=0⇔3x=-1⇔x=-1/3
2.5x-2=0⇔5x=2⇔x=5/2
phương trình có 2 nghiệm x=-1/3 và x=5/2
a) (x-1/5).(8/5+2x)=0
b) (x-4/7):(x+1/2)>0
c) (2x-3):(x+7/4)<0
Mong mn trả lời ạ
\(a,\Leftrightarrow\left[{}\begin{matrix}x-\dfrac{1}{5}=0\\\dfrac{8}{5}+2x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{5}\\x=\dfrac{4}{5}\end{matrix}\right.\)
\(b,\dfrac{x-\dfrac{4}{7}}{x+\dfrac{1}{2}}>0\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x-\dfrac{4}{7}>0\\x+\dfrac{1}{2}>0\end{matrix}\right.\\\left\{{}\begin{matrix}x-\dfrac{4}{7}< 0\\x+\dfrac{1}{2}< 0\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x>\dfrac{4}{7}\\x< -\dfrac{1}{2}\end{matrix}\right.\)
\(c,\dfrac{2x-3}{x+\dfrac{7}{4}}< 0\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}2x-3< 0\\x+\dfrac{7}{4}>0\end{matrix}\right.\\\left\{{}\begin{matrix}2x-3>0\\x+\dfrac{7}{4}< 0\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x< \dfrac{3}{2}\\x >-\dfrac{7}{4}\end{matrix}\right.\\\left\{{}\begin{matrix}x>\dfrac{3}{2}\\x< -\dfrac{7}{4}\end{matrix}\right.\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}-\dfrac{7}{4}< x< \dfrac{3}{2}\\x\in\varnothing\end{matrix}\right.\Leftrightarrow-\dfrac{7}{4}< x< \dfrac{3}{2}\)
Giải PT sau:
a, 3x - 7 = 0
b, 8 - 5x = 0
c, 3x - 2 = 5x + 8
d, \(\dfrac{3x-2}{3}\) = \(\dfrac{1-x}{2}\)
e, ( 5x + 1)(x - 3) = 0
f, (x + 1)(2x - 3) = 0
g, 4x(x + 3) - 5(x + 3) = 0
h, 8(x - 6) - 2x(6 - x) = 0
i, \(\dfrac{2}{x-1}\) + \(\dfrac{1}{x}\) = \(\dfrac{2x+5}{x^2-x}\)
k, \(\dfrac{3}{x+2}\) - \(\dfrac{2}{x-2}\) = \(\dfrac{2-x}{x^2-4}\)
m, \(\dfrac{3}{x}\) - \(\dfrac{2}{x-3}\) = \(\dfrac{4-x}{x^2-3}\)
n,\(\dfrac{3}{2x+10}\)+ \(\dfrac{2x}{x^2-25}\) = \(\dfrac{3}{x-5}\)
u, \(\dfrac{2}{x+3}\) - \(\dfrac{3}{x-2}\) = \(\dfrac{x+4}{\left(x+3\right)\left(x-2\right)}\)
a, 3x - 7 = 0
<=> 3x = 7
<=> x = 7/3
b, 8 - 5x = 0
<=> -5x = -8
<=> x = 8/5
c, 3x - 2 = 5x + 8
<=> -2x = 10
<=> x = -5
e) Ta có: \(\left(5x+1\right)\left(x-3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}5x+1=0\\x-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}5x=-1\\x=3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{1}{5}\\x=3\end{matrix}\right.\)
Vậy: \(S=\left\{-\dfrac{1}{5};3\right\}\)
`a ) 3x - 7 = 0`
`\(\Leftrightarrow \) 3x = 7`
`\(\Leftrightarrow \) x = 7/3`
Vậy `S = {-7/3}`
Bài1: giải các pt sau:
a, 3-4x+24+6x= x+27+3x
b, 5-(6-x)=4(3-2x)
c, x-(x+1)/3 = (2x+1)/5
d,(2x-1)/3 - (5x+2)/7 = x+13
Bài 2:
a, (x-1)(3x+1)=0
b, (x-5)(7-x)=0
c, ( x-1)(x+5)(-3x+8)=0
d, x(x^2 - 1 )=0
Giúp mình 2 bài này với , mình đang cần gấp , CẢM ƠN M.N ạ><
2:
a: =>x-1=0 hoặc 3x+1=0
=>x=1 hoặc x=-1/3
b: =>x-5=0 hoặc 7-x=0
=>x=5 hoặc x=7
c: =>\(\left[{}\begin{matrix}x-1=0\\x+5=0\\3x-8=0\end{matrix}\right.\Leftrightarrow x\in\left\{1;-5;\dfrac{8}{3}\right\}\)
d: =>x=0 hoặc x^2-1=0
=>\(x\in\left\{0;1;-1\right\}\)
1) Giải pt
a. x + 2 = 0
b. (x - 3) (2x + 8) = 0
2) Tìm đkxđ của pt : \(\dfrac{x}{x-5}\)- \(\dfrac{7}{2}\)= 0
Câu 1:
a: x+2=0
nên x=-2
b: (x-3)(2x+8)=0
=>x-3=0 hoặc 2x+8=0
=>x=3 hoặc x=-4
a .
x + 2 = 0
=> x = 0 - 2 = -2
b ) .
<=> x - 3 = 0 ; 2x + 8 = 0
= > x = 3 ; x = -8/2 = -4
c ) .
ĐKXĐ của pt : x - 5 khác 0 = > ddk : x khác 5
1)
a) \(x+2=0\)
\(\Leftrightarrow x=-2\)
Vậy S = {\(-2\)}
b) \(\left(x-3\right)\left(2x+8\right)=0\)
\(\Leftrightarrow x-3=0\) hoặc \(2x+8=0\)
*) \(x-3=0\)
\(\Leftrightarrow x=3\)
*) \(2x+8=0\)
\(\Leftrightarrow2x=-8\)
\(\Leftrightarrow x=-4\)
Vậy S = \(\left\{-4;3\right\}\)
2) ĐKXĐ:
\(x-5\ne0\Leftrightarrow x\ne5\)
a) 2x2 + 2x(5 - x)=12 d) 2(x + 5) - x2 - 5x = 0 g) (3x + 1)2 - (x+1) = 0
b) (5 - 2x)2 - 16 = 0 e) (2x - 1)2 - 4(x + 7)(x - 7) = 0 h) x2 + 7x - 8 = 0
c) 3x2 - 3x(x-2) = 36 f) (x + 4)2 - (x + 1)(x - 1) = 16 i) -2x2 +13x -15 = 0
mik cần gấp, cảm ơn mọi người.
\(a,\Leftrightarrow2x^2+10x-2x^2=12\Leftrightarrow x=\dfrac{12}{10}=\dfrac{6}{5}\\ b,\Leftrightarrow\left(5-2x-4\right)\left(5-2x+4\right)=0\\ \Leftrightarrow\left(1-2x\right)\left(9-2x\right)=0\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{2}\\x=\dfrac{9}{2}\end{matrix}\right.\\ c,\Leftrightarrow3x^2-3x^2+6x=36\Leftrightarrow x=6\\ d,\Leftrightarrow2\left(x+5\right)-x\left(x+5\right)=0\\ \Leftrightarrow\left(2-x\right)\left(x+5\right)=0\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-5\end{matrix}\right.\\ e,\Leftrightarrow4x^2-4x+1-4x^2+196=0\\ \Leftrightarrow-4x=-197\Leftrightarrow x=\dfrac{197}{4}\)
\(f,\Leftrightarrow x^2+8x+16-x^2+1=16\Leftrightarrow8x=-1\Leftrightarrow x=-\dfrac{1}{8}\\ g,Sửa:\left(3x+1\right)^2-\left(x+1\right)^2=0\\ \Leftrightarrow\left(3x+1-x-1\right)\left(3x+1+x+1\right)=0\\ \Leftrightarrow2x\left(4x+2\right)=0\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-\dfrac{1}{2}\end{matrix}\right.\\ h,\Leftrightarrow x^2+8x-x-8=0\\ \Leftrightarrow\left(x+8\right)\left(x-1\right)=0\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-8\end{matrix}\right.\\ i,\Leftrightarrow2x^2-13x+15=0\\ \Leftrightarrow2x^2+2x-15x-15=0\\ \Leftrightarrow\left(x+1\right)\left(2x-15\right)=0\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=\dfrac{15}{2}\end{matrix}\right.\)
1.
a) (x+3)(2x-8)≥0
b) (x-2)(5-x)>0
c) (x+1)(x+3)(x-4)≥0
d) (2x-4)(x+5)(1-x)<0
a) (x-8) (2x-7)=0
b) (4x-3)-(x+5)= 3(10-x)
tìm x biết:
a) (x-3)2-4=0
b) x2-2x=24
c) (x+4)2-(x+1)(x-1)=16
d) (2x+1)2-4(x-1)2=9
e) (x+3)2-(x-4)(x+8)=1
f) (2x-1)2+(x+3)2-5(x+7)(x-7)=0
g) 3(x+2)2+(2x-1)2-7(x+3)(x-3)=36
- Gửi lẻ câu hỏi ra nha bạn 2 3 câu 1 lần thôi .
a) (x-3)2-4=0
⇒ (x-3)2=4
⇒ hoặc x-3=2⇒x=5
hoặc x-3=-2⇒x=1
c) (x+4)2-(x+1)(x-1)=16
⇒ x2+8x+16-x2+1=16
⇒ 8x+17=16
⇒ 8x=-1
⇒ x=-1/8