Tìm x
\(\left(x-3\right)^3-\left(x-3\right)\left(x^2+3x+9\right)+9\left(x+1\right)^2=15\)
Tìm x, biết:
a) \(\left(x-3\right)\left(x^2+3x+9\right)+x\left(x+2\right)\left(2-x\right)=1\)
b) \(\left(x-3\right)^3-\left(x-3\right)\left(x^2+3x+9\right)+6\left(x+1\right)^2+3x^2=15\)
c)\(\left(x-1\right)^3-\left(x+3\right)\left(x^2-3x+9\right)+3\left(x^2-4\right)=2\)
d) \(\left(x-2\right)^3+6\left(x+1\right)^2-x^3+12=0\)
a: \(\Leftrightarrow x^3-27-x\left(x^2-4\right)=1\)
\(\Leftrightarrow x^3-27-x^3+4x=1\)
=>4x-27=1
hay x=7
b: \(\Leftrightarrow x^3-9x^2+27x-27-x^3+27+6\left(x+1\right)^2+3x^2=15\)
\(\Leftrightarrow-9x^2+27x+6x^2+12x+6+3x^2=15\)
=>39x+6=15
hay x=3/13
c: \(\Leftrightarrow x^3-3x^2+3x-1-x^3-27+3x^2-12=2\)
\(\Leftrightarrow3x-40=2\)
hay x=14
Tìm \(x\):
\(8\)) \(1-\left(x-6\right)=4\left(2-2x\right)\)
\(9\))\(\left(3x-2\right)\left(x+5\right)=0\)
\(10\))\(\left(x+3\right)\left(x^2+2\right)=0\)
\(11\))\(\left(5x-1\right)\left(x^2-9\right)=0\)
\(12\))\(x\left(x-3\right)+3\left(x-3\right)=0\)
\(13\))\(x\left(x-5\right)-4x+20=0\)
\(14\))\(x^2+4x-5=0\)
\(8,1-\left(x-6\right)=4\left(2-2x\right)\)
\(\Leftrightarrow1-x+6=8-8x\)
\(\Leftrightarrow-x+8x=8-1-6\)
\(\Leftrightarrow7x=1\)
\(\Leftrightarrow x=\dfrac{1}{7}\)
\(9,\left(3x-2\right)\left(x+5\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}3x-2=0\\x+5=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{2}{3}\\x=-5\end{matrix}\right.\)
\(10,\left(x+3\right)\left(x^2+2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+3=0\\x^2+2=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=\varnothing\end{matrix}\right.\)
`8)1-(x-5)=4(2-2x)`
`<=>1-x+5=8-6x`
`<=>5x=2<=>x=2/5`
`9)(3x-2)(x+5)=0`
`<=>[(x=2/3),(x=-5):}`
`10)(x+3)(x^2+2)=0`
Mà `x^2+2 > 0 AA x`
`=>x+3=0`
`<=>x=-3`
`11)(5x-1)(x^2-9)=0`
`<=>(5x-1)(x-3)(x+3)=0`
`<=>[(x=1/5),(x=3),(x=-3):}`
`12)x(x-3)+3(x-3)=0`
`<=>(x-3)(x+3)=0`
`<=>[(x=3),(x=-3):}`
`13)x(x-5)-4x+20=0`
`<=>x(x-5)-4(x-5)=0`
`<=>(x-5)(x-4)=0`
`<=>[(x=5),(x=4):}`
`14)x^2+4x-5=0`
`<=>x^2+5x-x-5=0`
`<=>(x+5)(x-1)=0`
`<=>[(x=-5),(x=1):}`
\(11,=>\left[{}\begin{matrix}5x-1=0\\x^2-9=0\end{matrix}\right.=>\left[{}\begin{matrix}x=\dfrac{1}{5}\\x=3\\x=-3\end{matrix}\right.\\ 12,=>\left(x+3\right)\left(x-3\right)=0\\ =>\left[{}\begin{matrix}x+3=0\\x-3=0\end{matrix}\right.=>\left[{}\begin{matrix}x=-3\\x=3\end{matrix}\right.\\ 13,=>x\left(x-5\right)-4\left(x-5\right)=0\\ =>\left(x-4\right)\left(x-5\right)=0\\ =>\left[{}\begin{matrix}x-4=0\\x-5=0\end{matrix}\right.=>\left[{}\begin{matrix}x=4\\x=5\end{matrix}\right.\)
\(14,=>x^2+5x-x-5=0\\ =>x\left(x+5\right)-\left(x+5\right)=0\\ =>\left(x-1\right)\left(x+5\right)=0\\ =>\left[{}\begin{matrix}x-1=0\\x+5=0\end{matrix}\right.=>\left[{}\begin{matrix}x=1\\x=-5\end{matrix}\right.\)
Tìm x,biết :
\(\left(x-3\right)^3-\left(x-3\right).\left(x^2+3x+9\right)+6.\left(x+1\right)^2=15\)
<=>(x3-9x2+27x-27)-(x3-33+6(x2+2x+1)=15
<=>x3-9x2+27x-27-x3+27+6x2+12x+6=15
<=>-3x2+39x+9=0
<=>x2-13x+3=0
<=>(x2-2.x.13/2+169/4)-157/4=0
<=>(x-13/2)2=157/4
<=>x-13/2=\(\sqrt{\frac{157}{2}}\)hoặc x=13/2= - \(\sqrt{\frac{157}{2}}\)
<=>x=(13+\(\sqrt{\frac{157}{2}}\))hoặc x=\(\frac{13-\sqrt{\frac{157}{2}}}{2}\)
(x-3)3 - (x-3)(x2+3x+9) + 6(x+1)2 = 15
x3 -9x2 + 27x - 27 - (x3-27) + 6( x2+ 2x + 1) =15
x3 -9x2 + 27x - 27 - x3+ 27 + 6x2 + 12x + 6 = 15
-3x2 + 39x -9 = 0
-3(x2 - 13x + 3) = 0
x2 - 13x + 3 = 0
=> x=0,2350179569 ( chỗ này bấm máy tính)
còn giải thì làm theo mấy cách trong đây
BÀI 3 – 4
Phương trình bậc hai một ẩn – Công thức nghiệm
Tìm x thuộc N biết:
a, \(\left(x-9\right)^4=\left(x-9\right)^7\)
b, \(\left(3x-15\right)^{10}=\left(3x-15\right)^{15}\)
c, \(\left(x-8\right)^3=\left(x-8\right)^6\)
Tham hkaor
a. x = 9
b. x = 5
c. x = 8
Đề nhìn vô lí quá
Tìm x , biết :
a. \(\left(x-2\right)^3-\left(x-3\right)\left(x^2+3x+9\right)+6\left(x+1\right)^2=15\)
b. \(2x^3-50x=0\)
c.\(5x^2-4\left(x^2-2x+1\right)-5=0\)
d. \(x^3-x=0\)
e. \(27x^3-27x^2+9x-1=1\)
a) Ta có: \(\left(x-2\right)^3-\left(x-3\right)\left(x^2+3x+9\right)+6\left(x+1\right)^2=15\)
\(\Leftrightarrow x^3-6x^2+12x-8-x^3+27+6\left(x^2+2x+1\right)=15\)
\(\Leftrightarrow-6x^2+12x+19+6x^2+12x+6=15\)
\(\Leftrightarrow24x+25=15\)
\(\Leftrightarrow24x=-10\)
hay \(x=-\dfrac{5}{12}\)
b) Ta có: \(2x^3-50x=0\)
\(\Leftrightarrow2x\left(x-5\right)\left(x+5\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=5\\x=-5\end{matrix}\right.\)
c) Ta có: \(5x^2-4\left(x^2-2x+1\right)-5=0\)
\(\Leftrightarrow5x^2-4x^2+8x-4-5=0\)
\(\Leftrightarrow x^2+8x-9=0\)
\(\Leftrightarrow\left(x+9\right)\left(x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-9\\x=1\end{matrix}\right.\)
d) Ta có: \(x^3-x=0\)
\(\Leftrightarrow x\left(x-1\right)\left(x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=1\\x=-1\end{matrix}\right.\)
e) Ta có: \(27x^3-27x^2+9x-1=1\)
\(\Leftrightarrow\left(3x\right)^3-3\cdot\left(3x\right)^2\cdot1+3\cdot3x\cdot1^2-1^3=1\)
\(\Leftrightarrow\left(3x-1\right)^3=1\)
\(\Leftrightarrow3x-1=1\)
\(\Leftrightarrow3x=2\)
hay \(x=\dfrac{2}{3}\)
Tìm x:
a) \(3x\left(3x-8\right)-9x^2+8=0\)
b)\(6x-15-x\left(5-2x\right)=0\)
c) \(x^3-16x=0\)
d) \(2x^2+3x-5=0\)
e) \(3x^2-x\left(3x-6\right)=36\)
f) \(\left(x+2\right)^2-\left(x-5\right)\left(x+1\right)=17\)
g) \(\left(x-4\right)^2-x\left(x+6\right)=9\)
h) \(4x\left(x-1000\right)-x+1000=0\)
i) \(x^2-36=0\)
j) \(x^2y-2+x+x^2-2y+xy=0\)
k) \(x\left(x+1\right)-\left(x-1\right).\left(2x-3\right)=0\)
l) \(3x^3-27x=0\)
Tìm x biết:
\(\left(x-1\right)^3-\left(x+3\right)\left(x^2-3x+9\right)+3\left(x^2-4\right)=2\)
(x-1)^3-(x+3)(x^2-3x+9)+3(x^2-4)=2
=>x^3-3x^2+3x-1-x^3-27+3x^2-12=2
=>3x-40=2
=>x=42/3=14
Tìm x:
\(\left(x-3\right)^3-\left(x-3\right)\left(x^3-3x+9\right)+9\left(x+1\right)^2=15\)
Tìm x, biết:
\(\left(x-3\right)^3-\left(x-3\right)\left(x^3-3x+9\right)+9\left(x+1\right)^2=15\)
Sửa đề: \(\left(x-3\right)^3-\left(x-3\right)\left(x^2-3x+9\right)+9\left(x+1\right)^2=15\)
Ta có: \(\left(x-3\right)^3-\left(x-3\right)\left(x^2-3x+9\right)+9\left(x+1\right)^2=15\)
\(\Leftrightarrow x^3-3x^2+3x-1-\left(x^3-27\right)+9\left(x^2+2x+1\right)-15=0\)
\(\Leftrightarrow x^3-3x^2+3x-1-x^3+27+9x^2+18x+9-15=0\)
\(\Leftrightarrow6x^2+21x+20=0\)
\(\Leftrightarrow6\left(x^2+\frac{7}{2}x+\frac{10}{3}\right)=0\)
\(\Leftrightarrow x^2+2\cdot x\cdot\frac{7}{4}+\frac{49}{16}+\frac{13}{48}=0\)
\(\Leftrightarrow\left(x+\frac{7}{4}\right)^2+\frac{13}{48}=0\)(Vô lý)
Vậy: x∈∅