\(\left(x-3\right)^3-\left(x-3\right)\left(x^2+3x+9\right)+9\left(x+1\right)^2=15\)
\(\Leftrightarrow x^3-9x^2+27x-27-\left(x^3-3^3\right)+9\left(x+1\right)^2=15\)
\(\Leftrightarrow x^3-9x^2+27x-27-x^3+27+9.\left(x^2+2x+1\right)=15\)
\(\Leftrightarrow-9x^2+27x+9x^2+18x+9=15\)
\(\Leftrightarrow45x=6\Leftrightarrow x=\frac{2}{15}\)
Vậy: \(S=\left\{\frac{2}{15}\right\}\)
pt <=> \(\left(x-3\right)^3-\left(x^3-27\right)+9\left(x+1\right)^2=15\)
<=> \(x^3-3x^2.3+3x.3^2-27-x^3+27+9x^2+18x+9=15\)
<=> \(45x=6\)
<=> \(x=\frac{6}{45}=\frac{2}{15}\)