tìm GTNN
\(4x+\dfrac{1}{x-1}\)( đk: với mọi x >1)
GIẢI PT :
1) \(\dfrac{x}{x-5}=\dfrac{x-2}{x-6}\) (GHI RÕ ĐK)
2) \(\dfrac{2x}{8-x}-\dfrac{2-2x}{4-x}=1\) (GHI RÕ ĐK)
3) \(\dfrac{2x}{x+4}-\dfrac{4x}{x^2-16}=0\) (GHI RÕ ĐK)
MN GIÚP E BÀI NÀY VỚI Ạ. E ĐANG CẦN GẤP Ạ.
1: \(\Leftrightarrow x^2-6x=x^2-7x+10\)
hay x=10
Cho A=\(\dfrac{x+2}{x-2}\) (ĐK: x≠-2; +2)
a)Tìm x để |A|=A
b)Tìm GTNN của (x+1).A với x>2
c)Tìm m để phương trinh A=m có nghiệm
Mk cảm ơn trc nha <3
`a.` Với `x≠-2; +2`
Để `|A|=A` thì `A>0`
`=>` \(\dfrac{x+2}{x-2}>0\)
trường hợp `1:` \(\left\{{}\begin{matrix}x+2>0\\x-2>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x>-2\\x>2\end{matrix}\right.\Leftrightarrow x>2\)
trường hợp `2:` \(\left\{{}\begin{matrix}x+2< 0\\x-2< 0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x< -2\\x< 2\end{matrix}\right.\Leftrightarrow x< -2\)
Vậy \(x>2\) hoặc `x< -2`
`c.` xét phương trình `A=m`
\(\Leftrightarrow\dfrac{x+2}{x-2}=m\\ \Leftrightarrow x+2=m\left(x-2\right)\\ \Leftrightarrow x+2=mx-2m\\ \Leftrightarrow x-mx=-2m-2\\ \Leftrightarrow\left(1-m\right)x=-2m-2\\\)
để phương trình có nghiệm thì `1-m≠0 => m≠1`
b) \(x>2\).
\(\left(x+1\right).A=\left(x+1\right).\dfrac{x+2}{x-2}=\dfrac{x^2+3x+2}{x-2}=\dfrac{x^2-2x+5x-10+12}{x-2}=\dfrac{x\left(x-2\right)+5\left(x-2\right)+12}{x-2}=x+5+\dfrac{12}{x-2}=x-2+\dfrac{12}{x-2}+7\ge2\sqrt{\left(x-2\right).\dfrac{12}{\left(x-2\right)}}+7=2\sqrt{12}+7\)\(\left(x+1\right).A=2\sqrt{12}+7\Leftrightarrow x=2+\sqrt{12}\)
a, Tìm GTNN: A = \(\dfrac{x^2-2x+2013}{x^2}\) ; x>0
b, Tìm GTLN và GTNN của: B = \(\dfrac{4x+1}{4x^2+2}\)
a.
\(A=\dfrac{2013}{x^2}-\dfrac{2}{x}+1=2013\left(\dfrac{1}{x}-\dfrac{1}{2013}\right)^2+\dfrac{2012}{2013}\ge\dfrac{2012}{2013}\)
Dấu "=" xảy ra khi \(x=2013\)
b.
\(B=\dfrac{4x^2+2-4x^2+4x-1}{4x^2+2}=1-\dfrac{\left(2x-1\right)^2}{4x^2+2}\le1\)
\(B_{max}=1\) khi \(x=\dfrac{1}{2}\)
\(B=\dfrac{-2x^2-1+2x^2+4x+2}{4x^2+2}=-\dfrac{1}{2}+\dfrac{\left(x+1\right)^2}{2x^2+1}\ge-\dfrac{1}{2}\)
\(B_{max}=-\dfrac{1}{2}\) khi \(x=-1\)
Tìm GTNN của hàm số \(Y=\dfrac{x^2+2x+33}{4x-4}\) với x>1
\(y=\dfrac{x+3}{4}+\dfrac{9}{x-1}=\dfrac{x-1}{4}+\dfrac{9}{x-1}+1\)
\(y\ge2\sqrt{\dfrac{9\left(x-1\right)}{4\left(x-1\right)}}+1=4\)
\(y_{min}=4\) khi \(x=7\)
Tìm GTNN của: C= x + \(\dfrac{1}{4x}\)+ \(\dfrac{x}{\left(2x+1\right)^{ }2}\)
P/s : Mik nghĩ là \(\left(2x+1\right)^2\)
\(C=x+\dfrac{1}{4x}+\dfrac{x}{\left(2x+1\right)^2}=\left[\dfrac{x}{\left(2x+1\right)^2}+\dfrac{2x+1}{16}+\dfrac{2x+1}{16}+\dfrac{1}{16x}\right]+\dfrac{3}{4}\left(x+\dfrac{1}{4x}\right)-\dfrac{1}{8}\)
AD BĐT AM - GM ta được : \(\dfrac{x}{\left(2x+1\right)^2}+\dfrac{2x+1}{16}+\dfrac{2x+1}{16}+\dfrac{1}{16x}\ge4\sqrt[4]{\dfrac{1}{16^3}}=\dfrac{1}{2}\)
\(x+\dfrac{1}{4x}\ge2\sqrt{\dfrac{1}{4}}=1\)
Suy ra : \(C\ge\dfrac{1}{2}+\dfrac{3}{4}.1-\dfrac{1}{8}=\dfrac{9}{8}\)
" = " \(\Leftrightarrow x=\dfrac{1}{2}\)
1. Tìm GTNN của \(y=x+\dfrac{1}{x}-5\) trên \(\left(0,+\infty\right)\)
2. Tìm GTNN của \(y=4x^2+\dfrac{1}{x}-4\) trên \(\left(0,+\infty\right)\)
3. Tìm GTLN của \(y=\dfrac{x^2+4}{x}\) trên \(\left(-\infty,0\right)\)
\(y=x+\dfrac{1}{x}-5\ge2\sqrt{\dfrac{x}{x}}-5=-3\)
\(y_{min}=-3\) khi \(x=1\)
\(y=4x^2+\dfrac{1}{2x}+\dfrac{1}{2x}-4\ge3\sqrt[3]{\dfrac{4x^2}{2x.2x}}-4=-1\)
\(y_{min}=-1\) khi \(x=\dfrac{1}{2}\)
\(y=x+\dfrac{4}{x}\Rightarrow y'=1-\dfrac{4}{x^2}=0\Rightarrow x=-2\)
\(y\left(-2\right)=-4\Rightarrow\max\limits_{x>0}y=-4\) khi \(x=-2\)
Tìm GTNN:
a) \(\dfrac{1}{-x^2+2x-4}\)
b) \(\dfrac{12}{12x-4x^2-13}\)
c) \(\dfrac{x^2-4x-4}{x^2-4x+5}\)
d) \(\dfrac{15}{-6x^2-5y^2+10xy-4x+10y-19}\)
e)\(\dfrac{x^2-2011}{4.\left(x^2+1\right)}\)
1. tìm GTNN của A= x(x+2)(x+4)(x+6)+8
2. tìm GTLN của B=5+(1-x)(x+2)(x+3)(x+6)3
3.tìm GTNN của C=(x+3)4 + (x-7)4
4. Cho x>0. Tìm GTNN của P=\(\dfrac{4x^2+1}{2x}\)
1.
$x(x+2)(x+4)(x+6)+8$
$=x(x+6)(x+2)(x+4)+8=(x^2+6x)(x^2+6x+8)+8$
$=a(a+8)+8$ (đặt $x^2+6x=a$)
$=a^2+8a+8=(a+4)^2-8=(x^2+6x+4)^2-8\geq -8$
Vậy $A_{\min}=-8$ khi $x^2+6x+4=0\Leftrightarrow x=-3\pm \sqrt{5}$
2.
$B=5+(1-x)(x+2)(x+3)(x+6)=5-(x-1)(x+6)(x+2)(x+3)$
$=5-(x^2+5x-6)(x^2+5x+6)$
$=5-[(x^2+5x)^2-6^2]$
$=41-(x^2+5x)^2\leq 41$
Vậy $B_{\max}=41$. Giá trị này đạt tại $x^2+5x=0\Leftrightarrow x=0$ hoặc $x=-5$
3.
Đặt $x+3=a; 7-x=b$ thì $a+b=10$
$C=a^4+b^4$
Áp dụng BĐT Bunhiacopxky:
$(a^4+b^4)(1+1)\geq (a^2+b^2)^2$
$\Rightarrow C\geq \frac{(a^2+b^2)^2}{2}$
$(a^2+b^2)(1+1)\geq (a+b)^2=100$
$\Rightarrow a^2+b^2\geq 50$
$\Rightarrow C\geq \frac{50^2}{2}=1250$
Vậy $C_{\min}=1250$
Giá trị này đạt tại $a=b=5\Leftrightarrow x=2$
1. Tìm GTNN m của hàm số f(x)= \(\dfrac{4}{x}\) + \(\dfrac{x}{1-x}\) với 1>x>0
2. Tìm GTNN m của hàm số f(x)= \(\dfrac{1}{x}\) + \(\dfrac{1}{1-x}\) với 0<x<1
Giúp mk với nhé thanks trước.
1.
\(f\left(x\right)=\dfrac{4}{x}+\dfrac{x-1+1}{1-x}=\dfrac{2^2}{x}+\dfrac{1}{1-x}-1\ge\dfrac{\left(2+1\right)^2}{x+1-x}-1=8\)
\(f\left(x\right)_{min}=8\) khi \(x=\dfrac{2}{3}\)
2.
\(f\left(x\right)=\dfrac{1}{x}+\dfrac{1}{1-x}\ge\dfrac{4}{x+1-x}=4\)
\(f\left(x\right)_{min}=4\) khi \(x=\dfrac{1}{2}\)