Giải phương trình:a)x3+2x2+2\(\sqrt{2}\) x+2\(\sqrt{2}\) =0
giải phương trình:
a) \(\sqrt{x+6}-\sqrt{x-2}=2\)
b) \(2\sqrt{x-3}-2x+3=0\)
a: ĐKXĐ: \(\left\{{}\begin{matrix}x+6>=0\\x-2>=0\end{matrix}\right.\Leftrightarrow x>=2\)
\(\sqrt{x+6}-\sqrt{x-2}=2\)
=>\(\left(\sqrt{x+6}-\sqrt{x-2}\right)^2=4\)
=>\(x+6+x-2-2\sqrt{\left(x+6\right)\left(x-2\right)}=4\)
=>\(2\sqrt{\left(x+6\right)\left(x-2\right)}=2x+4-4=2x\)
=>\(\sqrt{\left(x+6\right)\left(x-2\right)}=x\)
=>\(\left\{{}\begin{matrix}x>=0\\\left(x+6\right)\left(x-2\right)=x^2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x>=2\\x^2+4x-12=x^2\end{matrix}\right.\)
=>x=3
b: ĐKXĐ: \(x-3>=0\)
=>x>=3
\(2\sqrt{x-3}-2x+3=0\)
=>\(\sqrt{4x-12}=2x-3\)
=>\(\left\{{}\begin{matrix}x>=\dfrac{3}{2}\\4x-12=4x^2-12x+9\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x>=3\\4x^2-12x+9-4x+12=0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x>=3\\4x^2-16x+21=0\end{matrix}\right.\Leftrightarrow x\in\varnothing\)
Câu 5: Giải phương trình:
a. \(x\)\(\sqrt{3}\) - \(\sqrt{3}\) = \(1-x\)
b. \(7-\sqrt{x^2-6x+9}=0\)
c. \(\sqrt{9\left(x-2\right)^2}\) - 45 = 0
a) \(\Leftrightarrow\sqrt{3}\left(x-1\right)+\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(\sqrt{3}-1\right)=0\Leftrightarrow x=1\)
b) \(\Leftrightarrow\sqrt{\left(x-3\right)^2}=7\)
\(\Leftrightarrow\left|x-3\right|=7\)
\(\Leftrightarrow\left[{}\begin{matrix}x-3=7\\x-3=-7\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=10\\x=-4\end{matrix}\right.\)
c) \(\Leftrightarrow3\left|x-2\right|=45\)
\(\Leftrightarrow\left|x-2\right|=15\)
\(\Leftrightarrow\left[{}\begin{matrix}x-2=15\\x-2=-15\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=17\\x=-13\end{matrix}\right.\)
\(a,PT\Leftrightarrow\sqrt{3}\left(x-1\right)=1-x\\ \Leftrightarrow\sqrt{3}\left(x-1\right)+\left(x-1\right)=0\\ \Leftrightarrow\left(x-1\right)\left(\sqrt{3}+1\right)=0\\ \Leftrightarrow x=1\left(\sqrt{3}+1\ne0\right)\\ b,ĐK:x\in R\\ PT\Leftrightarrow\left|x-3\right|=7\Leftrightarrow\left[{}\begin{matrix}x-3=7\\3-x=7\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=10\\x=-4\end{matrix}\right.\\ c,ĐK:x\in R\\ PT\Leftrightarrow3\left|x-2\right|=45\Leftrightarrow\left|x-2\right|=15\\ \Leftrightarrow\left[{}\begin{matrix}x-2=15\\2-x=15\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=17\\x=-13\end{matrix}\right.\)
Giải phương trình:
a) \(\sqrt{x+3}+\dfrac{4x}{\sqrt{x+3}}=4\sqrt{x}\)
b \(2x^4-5x^3+6x^2-5x+2=0\)
\(a,\left(đk:x\ge0\right)\)
\(x=0\Rightarrow\sqrt{0+3}+0=0\left(vô-nghiệm\right)\)
\(x>0\)
\(\)\(\sqrt{x+3}+\dfrac{4x}{\sqrt{x+3}}=4\sqrt{x}\Leftrightarrow\dfrac{\sqrt{x+3}}{\sqrt{x}}+\dfrac{4\sqrt{x}}{\sqrt{x+3}}=4\)
\(VT\ge2\sqrt{\dfrac{\sqrt{x+3}}{\sqrt{x}}.\dfrac{4\sqrt{x}}{\sqrt{x+3}}}=4\)
\(dấu"="xảy-ra\Leftrightarrow\dfrac{\sqrt{x+3}}{\sqrt{x}}=\dfrac{4\sqrt{x}}{\sqrt{x+3}}\Leftrightarrow x+3=4x\Leftrightarrow x=1\left(tm\right)\)
\(b.2x^4-5x^3+6x^2-5x+2=0\Leftrightarrow\left(x-1\right)^2\left(2x^2-2x+2\right)\Leftrightarrow\left[{}\begin{matrix}x=1\\2x^2-2x+2=0\left(vô-nghiệm\right)\end{matrix}\right.\)
a) ĐKXĐ : \(x\ge0\)
PT <=> \(x+3-4\sqrt{x}\sqrt{x+3}+4x=0\)
<=> \(\left(\sqrt{x+3}-2\sqrt{x}\right)^2=0\)
<=> \(\sqrt{x+3}=2\sqrt{x}\)
<=> \(x+3=4x\)
<=> x = 1
Vậy x = 1 là nghiệm phương trình
Giải phương trình:
a) \(\dfrac{1}{x+\sqrt{1+x^2}}+\dfrac{1}{x-\sqrt{1+x^2}}+2=0\)
b) \(2x-5a\sqrt{x-a}+2a\left(a-1\right)=0\) với a>0
a.
\(\Leftrightarrow\dfrac{x-\sqrt{1+x^2}+x+\sqrt{1+x^2}}{\left(x-\sqrt{1+x^2}\right)\left(x+\sqrt{1+x^2}\right)}+2=0\)
\(\Leftrightarrow\dfrac{2x}{x^2-1-x^2}+2=0\)
\(\Leftrightarrow-2x+2=0\)
\(\Leftrightarrow x=1\)
b.
ĐKXĐ: \(x\ge a\)
Đặt \(\sqrt{x-a}=t\ge0\Rightarrow x=t^2+a\)
Pt trở thành:
\(2\left(t^2+a\right)-5at+2a^2-2a=0\)
\(\Leftrightarrow2t^2-5at+2a^2=0\)
\(\Leftrightarrow\left(2t-a\right)\left(t-2a\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}t=\dfrac{a}{2}\\t=2a\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x-a}=\dfrac{a}{2}\\\sqrt{x-a}=2a\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{a^2}{4}+a\\x=4a^2+a\end{matrix}\right.\)
giải phương trình:
a)\(\sqrt{x-5}=1-x\)
b)\(x+2\sqrt{2x-1}+5=0\)
c)\(x+\sqrt{x+1}=13\)
a.
ĐKXĐ: \(x\ge5\)
Đặt \(\sqrt{x-5}=t\ge0\Rightarrow x-5=t^2\Rightarrow x=t^2+5\)
Phương trình trở thành:
\(t=1-\left(t^2+5\right)\)
\(\Rightarrow t^2+t+4=0\) (vô nghiệm)
Vậy pt đã cho vô nghiệm
Cách khác: ĐKXĐ: \(x\ge5\)
Do \(x\ge5\Rightarrow1-x< 0\), mà \(\sqrt{x-5}\ge0\Rightarrow\sqrt{x-5}>1-x\) hay pt vô nghiệm
b.
ĐKXĐ: \(x\ge\dfrac{1}{2}\)
\(\Leftrightarrow2x+4\sqrt{2x-1}+10=0\)
\(\Leftrightarrow2x-1+4\sqrt{2x-1}+4+7=0\)
\(\Leftrightarrow\left(\sqrt{2x-1}+2\right)^2+7=0\)
Phương trình vô nghiệm
c.
ĐKXĐ: \(x\ge-1\)
Đặt \(\sqrt{x+1}=t\ge0\Rightarrow x=t^2-1\)
Phương trình trở thành:
\(t+t^2-1=13\)
\(\Rightarrow t^2+t-14=0\Rightarrow\left[{}\begin{matrix}t=\dfrac{-1-\sqrt{57}}{2}< 0\left(loại\right)\\t=\dfrac{-1+\sqrt{57}}{2}\end{matrix}\right.\)
\(\Rightarrow\sqrt{x+1}=\dfrac{-1+\sqrt{57}}{2}\)
\(\Rightarrow x=\dfrac{27-\sqrt{57}}{2}\)
Giải phương trình:
a) 2x2 + 3x - 27 =0
b) -10x2 + x + 3 =0
c) -x3 + x2 + 4 =0
d) x3 - 4x2 - 8x +8 =0
a: =>2x^2+9x-6x-27=0
=>x(2x+9)-3(2x+9)=0
=>(2x+9)(x-3)=0
=>x=3 hoặc x=-9/2
b: =>-10x^2+6x-5x+3=0
=>-2x(5x-3)-(5x-3)=0
=>(5x-3)(-2x-1)=0
=>x=-1/2 hoặc x=5/3
c: =>-x^3+2x^2-x^2+4=0
=>-x^2(x-2)-(x-2)(x+2)=0
=>(x-2)(-x^2-x-2)=0
=>x-2=0
=>x=2
d: =>(x^3+8)-4x(x+2)=0
=>(x+2)(x^2-2x+4)-4x(x+2)=0
=>(x+2)(x^2-6x+4)=0
=>x=-2 hoặc \(x=3\pm\sqrt{5}\)
Bài 1:Giải các phương trình:
a.\(\sqrt{2x}-\sqrt{50}=0\)
b.\(\sqrt{3x^2}-\sqrt{12}=0\)
a, ĐK: \(x\ge0\)
\(\sqrt{2x}-\sqrt{50}=0\)
\(\Leftrightarrow\sqrt{2x}=\sqrt{50}\)
\(\Leftrightarrow2x=50\)
\(\Leftrightarrow x=25\left(tm\right)\)
b, ĐK: \(x\in R\)
\(\sqrt{3x^2}-\sqrt{12}=0\)
\(\Leftrightarrow\sqrt{3x^2}=\sqrt{12}\)
\(\Leftrightarrow3x^2=12\)
\(\Leftrightarrow x=\pm2\)
Giải phương trình:
a) \(\sqrt{16-x}+\sqrt{x+9}=7\)
b) \(\sqrt{2-x^2}+\sqrt{x^2+8}=4\)
\(a,ĐK:-9\le x\le16\\ PT\Leftrightarrow\left(\sqrt{16-x}-3\right)+\left(\sqrt{x+9}-4\right)=0\\ \Leftrightarrow\dfrac{7-x}{\sqrt{16-x}+3}+\dfrac{x-7}{\sqrt{x+9}+4}=0\\ \Leftrightarrow\left(x-7\right)\left(\dfrac{1}{\sqrt{x+9}+4}-\dfrac{1}{\sqrt{16-x}+3}\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=7\left(tm\right)\\\dfrac{1}{\sqrt{x+9}+4}-\dfrac{1}{\sqrt{16-x}+3}=0\end{matrix}\right.\)
Với \(x\ge-9\) thì \(\dfrac{1}{\sqrt{x+9}+4}-\dfrac{1}{\sqrt{16-x}+3}>0\)
Do đó PT có nghiệm duy nhất \(x=7\)
\(b,ĐK:-\sqrt{2}\le x\le\sqrt{2}\\ PT\Leftrightarrow\left(\sqrt{2-x^2}-1\right)+\left(\sqrt{x^2+8}-3\right)=0\\ \Leftrightarrow\dfrac{1-x^2}{\sqrt{2-x^2}+1}+\dfrac{x^2-1}{\sqrt{x^2+8}+3}=0\\ \Leftrightarrow\left(x^2-1\right)\left(\dfrac{1}{\sqrt{x^2+8}+3}-\dfrac{1}{\sqrt{2-x^2}+1}\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=1\\x=-1\\\dfrac{1}{\sqrt{x^2+8}+3}-\dfrac{1}{\sqrt{2-x^2}+1}=0\end{matrix}\right.\)
Với \(x\ge-\sqrt{2}\) thì \(\dfrac{1}{\sqrt{x^2+8}+3}-\dfrac{1}{\sqrt{2-x^2}+1}>0\)
Vậy pt có tập nghiệm \(x=\pm1\)
a) Đk: \(\left\{{}\begin{matrix}16-x\ge0\\x+9\ge0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x\le16\\x\ge-9\end{matrix}\right.\) \(\Rightarrow x\in\left[-9;16\right]\)
Pt: \(\Rightarrow\left(\sqrt{16-x}+\sqrt{x+9}\right)^2=7^2\)
\(\Rightarrow16-x+x+9+2\sqrt{144+7x-x^2}=49\)
\(\Rightarrow\sqrt{144+7x-x^2}=12\)
\(\Rightarrow144+7x-x^2=144\)
Bạn tự tìm x nhé rồi đối chiếu đk ta đc \(x=0\) hoặc \(x=7\)
Giải phương trình:
a)\(\sqrt{x^2+2x\sqrt{3}+3}=\sqrt{3}+x\)
b)\(\sqrt{x-3+2\sqrt{x-4}}=2\sqrt{x-4}+1\)
a)Pt\(\Leftrightarrow\sqrt{\left(x+\sqrt{3}\right)^2}=x+\sqrt{3}\)
\(\Leftrightarrow\left|x+\sqrt{3}\right|=x+\sqrt{3}\)
\(\Leftrightarrow x+\sqrt{3}\ge0\)\(\Leftrightarrow x\ge-\sqrt{3}\)
Vậy...
b)Đk:\(x\ge4\)
Pt\(\Leftrightarrow\sqrt{\left(x-4\right)+2\sqrt{x-4}+1}=2\sqrt{x-4}+1\)
\(\Leftrightarrow\sqrt{\left(\sqrt{x-4}+1\right)^2}=1+2\sqrt{x-4}\)
\(\Leftrightarrow\sqrt{x-4}+1=2\sqrt{x-4}+1\)
\(\Leftrightarrow\sqrt{x-4}=0\)
\(\Leftrightarrow x=4\) (tm)
Vậy...
a) Ta có: \(\sqrt{x^2+2x\sqrt{3}+3}=x+\sqrt{3}\)
\(\Leftrightarrow\left|x+\sqrt{3}\right|=x+\sqrt{3}\)
\(\Leftrightarrow\left[{}\begin{matrix}x+\sqrt{3}=x+\sqrt{3}\left(x\ge-\sqrt{3}\right)\\x+\sqrt{3}=-x-\sqrt{3}\left(x< -\sqrt{3}\right)\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x\ge-\sqrt{3}\\x=-\sqrt{3}\left(loại\right)\end{matrix}\right.\Leftrightarrow x\ge-\sqrt{3}\)