tìm GTNN : a, A = 4 I 2x -1 I +3
tìm GTNN : A= 4 I 2x - 1 I +3
`|2x-1|>=0`
`=>4|2x-1|>=0`
`=>4|2x-1|+3>=3`
Dâu "=" `<=>X=1/2`
tìm GTNN : A= 4 I 2x - 1 I +3
\(A=4\left|2x-1\right|+3\ge0+3=3\)
\(\Rightarrow A_{min}=3\Leftrightarrow2x-1=0\Leftrightarrow x=\dfrac{1}{2}\)
\(4\left|2x-1\right|\ge0\left(\forall x\right)=>4\left|2x-1\right|+3\ge3\)
dấu= xảy ra <=>2x-1=0<=>x\(=\dfrac{1}{2}\)
\(=>A\ge3\)
vậy min A=3
Vì 4|2x - 1| \(\ge0\forall x\in R\Rightarrow A=4\left|2x-1\right|+3\ge3\forall x\in R\)
Dấu "=" xảy ra khi : \(4\left|2x-1\right|=0\Leftrightarrow x=\dfrac{1}{2}\)
Vậy MinA = 3 khi x = \(\dfrac{1}{2}\)
Bài 1: Tìm GTNN của biểu thức B = x(x-3)(x-1)(x+4)
Bài 2: Tìm GTNN của A = 2x + |2x-5|
Bài 3: Tìm GTNN của M = |x| +|x-1|
Bài 4 Tìm GTNN của A = x -\(\sqrt{x}\)
\(2x+\left|2x-5\right|=2x+\left|5-2x\right|\ge2x+5-2x=5.\Rightarrow A_{min}=5.\text{Dâu "=" xay }ra\Leftrightarrow2x-5\ge0\Leftrightarrow x\le2,5\)
\(M=\left|x\right|+\left|x-1\right|=\left|x\right|+\left|1-x\right|\ge x+1-x=1\Rightarrow M_{min}=1.\text{Dâu "=" xay ra}\Leftrightarrow\left\{{}\begin{matrix}x\ge0\\1-x\ge0\end{matrix}\right.\Leftrightarrow0\le x\le1\)
\(A=x-\sqrt{x}\Leftrightarrow A+\frac{1}{4}=x-\sqrt{x}+\frac{1}{4}=\left(\sqrt{x}-\frac{1}{2}\right)^2\ge0\Rightarrow A+\frac{1}{4}\ge0\Rightarrow A_{min}=\frac{-1}{4}.\text{Dâus "=" xay ra khi:}x=\frac{1}{4}\)
Bài 1:
Sửa đề :v
\(B=x\left(x-3\right)\left(x-1\right)\left(x-4\right)\)
\(B=\left(x^2-4x\right)\left(x^2-4x+3\right)\)
Đặt \(x^2-4x=t\)
\(B=t\left(t+3\right)\)
\(B=t^2+3t=t^2+2\cdot t\cdot\frac{3}{2}+\frac{9}{4}-\frac{9}{4}=\left(t+\frac{3}{2}\right)^2-\frac{9}{4}\ge\frac{-9}{4}\forall t\)
Dấu "=" xảy ra \(\Leftrightarrow t=\frac{-3}{2}\Leftrightarrow x^2-4x=\frac{-3}{2}\Leftrightarrow x=\frac{4\pm\sqrt{10}}{2}\)
Bài 2: Mình nghĩ nên sửa đề tìm min \(A=\left|2x\right|+\left|2x-5\right|\)
Bài 3:
\(M=\left|x\right|+\left|x-1\right|\)
\(M=\left|x\right|+\left|1-x\right|\ge\left|x+1-x\right|=1\)
Dấu "=" xảy ra \(\Leftrightarrow x\left(1-x\right)\ge0\Leftrightarrow0\le x\le1\)
Bài 4:
\(A=x-\sqrt{x}\)
Do điều kiện \(x\ge0\)
\(\Rightarrow A\ge0+0=0\)
Dấu "=" xảy ra \(\Leftrightarrow x=0\)
tìm GtNN : A = I x - 1 I + I x -2 I + Ix - 3 I + Ix - 4 I + 15
Đặt `B = |x - 1| + |x - 2| + |x - 3| + |x - 4|`
`= (|x - 1| + |x - 4|) + (|x - 2| + |x - 3|)`
`= (|x - 1| + |4 - x|) + (|x - 2| + |3 - x|)`
\(\Rightarrow B\ge\left|x-1+4-x\right|+\left|x-2+3-x\right|\)
\(B\ge\left|3\right|+\left|1\right|=4\)
\(\Rightarrow A\ge4+15=19\)
hay MinA = 19
Dấu "=" xảy ra khi: \(\left\{{}\begin{matrix}\left(x-1\right)\left(4-x\right)\ge0\\\left(x-2\right)\left(3-x\right)\ge0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}\left(x-1\right)\left(x-4\right)\le0\\\left(x-2\right)\left(x-3\right)\le0\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}1\le x\le4\\2\le x\le3\end{matrix}\right.\Rightarrow2\le x\le3\)
Vậy MinA = 19 tại \(2\le x\le3\).
Tìm GTNN; GTLN
\(\text{a) }A=\dfrac{3}{-x^2+2x+4}\)
\(\text{b) }B=\dfrac{x^2+x+1}{x^2+2x+1}\)
\(\text{c) }\dfrac{4x+3}{x^2+1}\)
a ) Để \(\dfrac{3}{-x^2+2x+4}\) đạt GTlN thì :
\(-x^2+2x+4\) phải đạt GTNN ( chắc ai cũng biết )
Ta có :
\(-x^2+2x+4\)
\(=-\left(x^2-2x+1-5\right)\)
\(=-\left(x-1\right)^2-5\)
Tới đây chắc bạn hỉu rồi nhỉ ?
Tìm GTLN - GTNN của các biểu thức ?
* bài 1: Tìm GTNN:
a) A= (x - 5)² + (x² - 10x)² - 24
b) B= (x - 7)² + (x + 5)² - 3
c) C= 5x² - 6x +1
d) D= 16x^4 + 8x² - 9
e) A= (x + 1)(x - 2)(x - 3)(x - 6)
f) B= (x - 2)(x - 4)(x² - 6x + 6)
g) C= x^4 - 8x³ + 24x² - 8x + 25
h) D= x^4 + 2x³ + 2x² + 2x - 2
i) A= x² + 4xy + 4y² - 6x – 12y +4
k) B= 10x² + 6xy + 9y² - 12x +15
l) C= 5x² - 4xy + 2y² - 8x – 16y +83
m) A= (x - 5)^4 + (x - 7)^4 – 10(x - 5)²(x - 7)² + 9
* Bài 2: Tìm GTLN:
a) M= -7x² + 4x -12
b) N= -16x² - 3x +14
c) M= -x^4 + 4x³ - 7x² + 12x -5
d) N= -(x² + x – 2) (x² +9x+18) +27
* Bài 3:
1) Cho x - 3y = 1. Tìm GTNN của M= x² + 4y²
2) Cho 4x - y = 5. Tìm GTNN của 3x²+2y²
3) Cho a + 2b = 2. Tìm GTNN của a³ + 8b³
* Bài 4: Tìm GTLN và GTNN của các biểu thức:
1) A = (3 - 4x)/(x² + 1)
2) B= (8x + 3)/(4x² + 1)
3) C= (2x+1)/(x²+2)
Tìm GTNN của biểu thức:
\(x^4-2x^2-3\left|x^2-1\right|-9\)
Tìm GTNN của biểu thức sau:
a) A = (6x-1)^2 + 2017
b) B = (x^2-16)^4 + (y-2)^2
c) C = 15 + I 2x-1 I ( I là dấu trị tuyệt đối )
d) D = (x-1)^2 + (2x-y)^2 + 3
a) \(A=\left(6x-1\right)^2+2017\)
Vì \(\left(6x-1\right)^2\ge0\)
Nên \(\left(6x-1\right)^2+2017\ge2017\)
Vậy GTNN của A=2017 khi \(6x-1=0\Leftrightarrow x=\dfrac{1}{6}\)
c) \(C=15+\left|2x-1\right|\)
Vì \(\left|2x-1\right|\ge0\)
Nên \(\left|2x-1\right|+15\ge15\)
Vậy GTNN của C=15 khi \(2x-1=0\Leftrightarrow x=\dfrac{1}{2}\)
d) \(D=\left(x-1\right)^2+\left(2x-y\right)^2+3\)
Vì \(\left(x-1\right)^2+\left(2x-y\right)^2\ge0\)
Nên \(\left(x-1\right)^2+\left(2x-y\right)^2+3\ge3\)
Vậy GTNN của D=3 khi \(\left\{{}\begin{matrix}x-1=0\\2x-y=0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x=1\\2.1-y=0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x=0\\y=2\end{matrix}\right.\)
Tìm GTNN của
a, A=\(3\left(x-3\right)^2+\left(y-1\right)^2+2005\)
b, B=\(\frac{-4}{\left(2x-3\right)^2+5}\)
c,C= I\(x^0-1\)I +\(\left(x-1\right)^2+y^2+12\)