Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Big City Boy
Xem chi tiết
Nguyễn Huy Tú
30 tháng 1 2022 lúc 10:59

ĐKXĐ : \(\left\{{}\begin{matrix}a^2-b^2>0\\a-\sqrt{a^2-b^2}\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a^2>b^2\\a^2-b^2\ne a^2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a^2>b^2\\b^2\ne0\end{matrix}\right.\)

Akai Haruma
30 tháng 1 2022 lúc 13:31

Lời giải:
ĐKXĐ: \(\left\{\begin{matrix} a^2-b^2>0\\ a-\sqrt{a^2-b^2}\neq 0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} a^2>b^2\\ a\neq \sqrt{a^2-b^2}\end{matrix}\right.\)

\(\Leftrightarrow \left\{\begin{matrix} a^2> b^2\\ a\neq \sqrt{a^2-b^2}\end{matrix}\right.\)

Anh Thơ Nguyễn
Xem chi tiết
Nguyễn Lê Phước Thịnh
3 tháng 6 2022 lúc 20:40

a: ĐKXĐ: x>=0; x<>1

\(A=\dfrac{x+\sqrt{x}-2\sqrt{x}+2-2}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\)

\(=\dfrac{x-\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=\dfrac{\sqrt{x}}{\sqrt{x}+1}\)

b: Thay x=9 vào A, ta được:

\(A=\dfrac{3}{3+1}=\dfrac{3}{4}\)

tran thi phuong
Xem chi tiết
Alice
13 tháng 1 2019 lúc 18:44

a) ĐKXĐ: \(\left\{{}\begin{matrix}\sqrt{x}-1\ne0\\\sqrt{x}+1\ne0\\x-1\ne0\\\sqrt{x}\ge0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ne1\\x\ge0\end{matrix}\right.\)

b) \(A=\dfrac{\sqrt{x}}{\sqrt{x}-1}-\dfrac{2}{\sqrt{x}+1}-\dfrac{2}{x-1}=\dfrac{\sqrt{x}\left(\sqrt{x}+1\right)-2\left(\sqrt{x}-1\right)-2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=\dfrac{x+\sqrt{x}-2\sqrt{x}+2-2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=\dfrac{x-\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=\dfrac{\sqrt{x}}{\left(\sqrt{x}+1\right)}\)c)\(B=A\left(x-1\right)=\dfrac{\sqrt{x}}{\left(\sqrt{x}+1\right)}\left(x-1\right)=\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+1\right)}=\sqrt{x}\left(\sqrt{x}-1\right)=x-\sqrt{x}=x-\sqrt{x}+\dfrac{1}{4}-\dfrac{1}{4}=\left(\sqrt{x}-\dfrac{1}{2}\right)^2-\dfrac{1}{4}\ge-\dfrac{1}{4}\)(Vì \(\left(\sqrt{x}-\dfrac{1}{2}\right)^2\ge0\Rightarrow\left(\sqrt{x}-\dfrac{1}{2}\right)^2-\dfrac{1}{4}\ge-\dfrac{1}{4}\))

=> MinB =\(-\dfrac{1}{4}\) khi x= \(\dfrac{1}{4}\)

hello hello
Xem chi tiết
Nguyễn Lê Phước Thịnh
26 tháng 10 2022 lúc 15:11

a: ĐKXĐ: x>0; x<>1

b: \(B=\dfrac{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)-\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+1\right)^2\cdot\left(\sqrt{x}-1\right)}\cdot\dfrac{\left(\sqrt{x}+1\right)\left(x-1\right)}{\sqrt{x}}\)

\(=\dfrac{x+\sqrt{x}-2-x+\sqrt{x}+2}{\sqrt{x}}=2\)

Nguyễn Minh Ngọc
Xem chi tiết
Nguyễn Huy Tú
8 tháng 5 2022 lúc 9:27

đk x > 0 

\(\dfrac{A}{B}=\dfrac{\dfrac{x+2\sqrt{x}}{x}}{\dfrac{\sqrt{x}+2}{\sqrt{x}+1}}=\dfrac{\dfrac{\sqrt{x}+2}{\sqrt{x}}}{\dfrac{\sqrt{x}+2}{\sqrt{x}+1}}=\dfrac{\sqrt{x}+1}{\sqrt{x}}-\dfrac{7}{4}< 0\)

\(\Leftrightarrow\dfrac{4\sqrt{x}+4-7\sqrt{x}}{4\sqrt{x}}< 0\Leftrightarrow\dfrac{-3\sqrt{x}+4}{4\sqrt{x}}< 0\)

\(\Leftrightarrow\left\{{}\begin{matrix}-3\sqrt{x}+4\ne0\\-3\sqrt{x}+4< 0\\4\sqrt{x}\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ne\dfrac{16}{9}\\x< \dfrac{16}{9}\\x\ne0\end{matrix}\right.\)

Hoàng Phú Lợi
Xem chi tiết
Rin Huỳnh
17 tháng 12 2023 lúc 18:34

a) ĐKXD: \(\left\{{}\begin{matrix}a>0\\a\ne1\\a\ne4\end{matrix}\right.\)

b) Với \(a>0;a\ne1;a\ne4\), ta có:

\(B=\left(\dfrac{1}{\sqrt{a}-1}-\dfrac{1}{\sqrt{a}}\right):\left(\dfrac{\sqrt{a}+1}{\sqrt{a}-2}-\dfrac{\sqrt{a}+2}{\sqrt{a}-1}\right)\\ =\dfrac{\sqrt{a}-\sqrt{a}+1}{\sqrt{a}\left(\sqrt{a}-1\right)}:\dfrac{a-1-a+4}{\left(\sqrt{a}-2\right)\left(\sqrt{a}-1\right)}\\ =\dfrac{1}{\sqrt{a}\left(\sqrt{a}-1\right)}:\dfrac{3}{\left(\sqrt{a}-2\right)\left(\sqrt{a}-1\right)}\\ =\dfrac{\sqrt{a}-2}{3\sqrt{a}}\)

c)\(B\le\dfrac{1}{3}\rightarrow\dfrac{\sqrt{a}-2}{3\sqrt{a}}\le\dfrac{1}{3}\rightarrow\dfrac{-2}{\sqrt{a}}\le0\) (đúng với mọi a thoả ĐKXĐ).

Hoàng Phú Lợi
Xem chi tiết

a, ĐKXĐ: 

\(\left\{{}\begin{matrix}\left|a\right|>1^2\\\left|a\right|>0\\\left|a\right|>2^2\end{matrix}\right.\Leftrightarrow a>4\)

b,

 \(B=\left(\dfrac{1}{\sqrt{a}-1}-\dfrac{1}{\sqrt{a}}\right):\left(\dfrac{\sqrt{a}+1}{\sqrt{a}-2}-\dfrac{\sqrt{a}+2}{\sqrt{a}-1}\right)\\ B=\dfrac{\sqrt{a}-\left(\sqrt{a}-1\right)}{\sqrt{a}\left(\sqrt{a}-1\right)}:\dfrac{\left[\left(\sqrt{a}+1\right)\left(\sqrt{a}-1\right)-\left(\sqrt{a}+2\right)\left(\sqrt{a}-2\right)\right]}{\left(\sqrt{a}-2\right)\left(\sqrt{a}-1\right)}\\ B=\dfrac{1}{\sqrt{a}\left(\sqrt{a}-1\right)}:\dfrac{\left(a-1\right)-\left(a-4\right)}{\left(\sqrt{a}-2\right)\left(\sqrt{a}-1\right)}\\ B=\dfrac{1}{\sqrt{a}\left(\sqrt{a}-1\right)}.\dfrac{\left(\sqrt{a}-1\right)\left(\sqrt{a}-2\right)}{3}\\ B=\dfrac{\sqrt{a}-2}{3\sqrt{a}}\)

\(c,B\le\dfrac{1}{3}\\ \Leftrightarrow\dfrac{\sqrt{a}-2}{3\sqrt{a}}\le\dfrac{1}{3}\\ \Leftrightarrow3\left(\sqrt{a}-2\right)\le3\sqrt{a}\\ \Leftrightarrow\sqrt{a}-2\le\sqrt{a}\\ \Leftrightarrow\sqrt{a}-\sqrt{a}\le2\\ \Leftrightarrow0\le2\left(luôn.đúng\right)\)

Vậy: Với a>4 thì \(B\le\dfrac{1}{3}\)

tran yen ly
Xem chi tiết
Akai Haruma
16 tháng 8 2018 lúc 12:27

Lời giải:

a) ĐKXĐ: \(a>0; a\neq 1\)

\(M=\left(\frac{\sqrt{a}}{2}-\frac{1}{2\sqrt{a}}\right)\left(\frac{a-\sqrt{a}}{\sqrt{a}+1}-\frac{a+\sqrt{a}}{\sqrt{a}-1}\right)\)

\(=\frac{a-1}{2\sqrt{a}}.\frac{(a-\sqrt{a})(\sqrt{a}-1)-(a+\sqrt{a})(\sqrt{a}+1)}{(\sqrt{a}+1)(\sqrt{a}-1)}\)

\(=\frac{a-1}{2\sqrt{a}}.\sqrt{a}.\frac{(\sqrt{a}-1)^2-(\sqrt{a}+1)^2}{a-1}\)

\(=\frac{(\sqrt{a}-1)^2-(\sqrt{a}+1)^2}{2}=\frac{a+1-2\sqrt{a}-(a+1+2\sqrt{a})}{2}=\frac{-4\sqrt{a}}{2}=-2\sqrt{a}\)

b)

Để \(M=-4\Leftrightarrow -2\sqrt{a}=-4\Leftrightarrow \sqrt{a}=2\Rightarrow a=4\)

Nguyễn Minh Ngọc
Xem chi tiết
Nguyễn Huy Tú
8 tháng 5 2022 lúc 10:23

đk x >= 0 ; x khác 1/4 

Ta có \(^{P=\dfrac{5\sqrt{x}}{2\sqrt{x}+1}+\dfrac{1}{2\sqrt{x}+1}}=\dfrac{5\sqrt{x}+1}{2\sqrt{x}+1}\)

\(\Rightarrow5\sqrt{x}+1⋮2\sqrt{x}+1\Leftrightarrow10\sqrt{x}+2⋮2\sqrt{x}+1\)

\(\Leftrightarrow5\left(2\sqrt{x}+1\right)-3⋮2\sqrt{x}+1\Rightarrow2\sqrt{x}+1\inƯ\left(-3\right)=\left\{\pm1;\pm3\right\}\)

\(2\sqrt{x}+1\) 1 -1 3 -3
x 0 loại 1 loại