Cho các đa thức: \(P\left(x\right)=3x^4-x^3+4x^2+2x=1;Q\left(x\right)=-2x^4-x^2+x-2\)

Cho đa thức \(Q\left(x\right)=-3x^4+4x^3+2x^2+\dfrac{2}{3}-3x-2x^4-4x^3+8x^4+1+3x\)
Chứng tỏ đa thức \(Q\left(x\right)\) không có nghiệm.
\(Q\left(x\right)=-3x^4+4x^3+2x^2+\dfrac{2}{3}-3x-2x^4-4x^3+8x^4+1+3x\)
\(=\left(-3x^4-2x^4+8x^4\right)+\left(4x^3-4x^3\right)+2x^2-\left(3x-3x\right)+\left(1+\dfrac{2}{3}\right)\)
\(=3x^4+2x^2+\dfrac{5}{3}\)
\(3x^4+2x^2+\dfrac{5}{3}=0\)
\(\Rightarrow3x^4+2x^2=-\dfrac{5}{3}\)(Vô lí vì \(3x^4\) và \(2x^2\) luôn lớn hơn hoặc bằng 0)
Vậy Q(x) không có nghiệm
Q(x)=3x^4+2x^2+5/3>=5/3>0 với mọi x
=>Q(x) vô nghiệm
Cho hai đa thức :
\(P\left(x\right)=-2x^2+3x^4+x^3+x^2-\dfrac{1}{4}x\\ Q\left(x\right)=x^4+3x^2-4-4x^3-2x^2\)
Chứng tỏ x=0 là nghiệm của đa thức P(x), nhưng không phải là nghiệm của đa thức Q(x)
\(P\left(0\right)=3.0^4+0^3-0^2+\dfrac{1}{4}.0=0+0-0+0=0\)
\(Q\left(0\right)=0^4-4.0^3+0^2-4=0-0+0-4=-4\)
vậy Chứng tỏ x=0 là nghiệm của đa thức P(x), nhưng không phải là nghiệm của đa thức Q(x)
thu gọn
\(P\left(x\right)=3x^4+x^3\left(-2x^2+x^2\right)+\dfrac{1}{4}x=3x^4+x^3-x^2+\dfrac{1}{4}x\)
\(Q\left(x\right)=x^4-4x^3+\left(3x^2-2x^2\right)-4=x^4-4x^3+x^2-4\)
Lời giải:
Ta thấy:
$P(0)=-2.0^2+3.0^4+0^3+0^2-\frac{1}{4}.0=0$ nên $x=0$ là nghiệm của $P(x)$
$Q(0)=0^4+3.0^2-4-4.0^3-2.0^2=-4\neq 0$
Do đó $x=0$ không phải nghiệm của $Q(x)$
Cho hai đa thức:
\(P\left(x\right)=-2x^4-7x+\dfrac{1}{2}-3x^4+2x^2-x\) ; \(Q\left(x\right)=3x^3+4x^4-5x^2-x^3-6x+\dfrac{3}{2}\)
a) Thu gọn và sắp xếp các hạng tử của mỗi đa thức trên theo lũy thừa giảm dần của biến.
b) Tính A(x) = P(x) + Q(x); B(x) = P(x) - Q(x)
a: \(P\left(x\right)=-5x^4+2x^2-8x+\dfrac{1}{2}\)
\(Q\left(x\right)=4x^4+2x^3-5x^2-6x+\dfrac{3}{2}\)
b: \(A\left(x\right)=-5x^4+2x^2-8x+\dfrac{1}{2}+4x^4+2x^3-5x^2-6x+\dfrac{3}{2}=-x^4+2x^3-3x^2-14x+2\)
\(B\left(x\right)=-5x^4+2x^2-8x+\dfrac{1}{2}-4x^4-2x^3+5x^2+6x-\dfrac{3}{2}=-9x^4-2x^3+7x^2-2x-1\)
a)\(Q\left(x\right)=2x^3+4x^4-6x-5x^2+\dfrac{3}{2}\)
\(P\left(x\right)=2x^2-5x^4-8x+\dfrac{1}{2}\)
\(A\left(x\right)=2x^3-x^4-3x^2+2-14x\)
\(B\left(x\right)=-2x^3-9x^4-2x+7x^2-1\)
Cho các đa thức
P(x)= \(3x^5+5x-4x^4-2x^3+6+4x^2\)
Q(x)= \(4x^4-x+3x^2-2x^3-7-x^5\)
c) Chứng tỏ rằng x=-1 là nghiệm của\(P\left(x\right)\) nhưng không phải là nghiệm của Q(x)
c: \(P\left(-1\right)=-3-5-4+2+6+4=0\)
Vậy: x=-1 là nghiệm của P(x)
\(Q\left(-1\right)=4+1+3+2-7+1=4< >0\)
=>x=-1 không là nghiệm của Q(x)
Cho các đa thức sau: \(P\left(x\right)=-2x+\frac{1}{2}x^2+3x^4-3x^2-3\) và \(Q\left(x\right)=3x^4+x^3-4x^2+1,5x^3-3x^4+2x+1\)
Xác định đa thức \(R\left(x\right)\) thỏa mãn \(R\left(x\right)+P\left(x\right)-Q\left(x\right)+x^2=2x^3-\frac{3}{2}x+1\)
\(P\left(x\right)-Q\left(x\right)=\left(-2x+\frac{1}{2}x^2+3x^4-3x^2-3\right)-\left(3x^4+x^3-4x^2+1,5x^3-3x^4+2x+1\right)\\ P\left(x\right)-Q\left(x\right)=-2x+\frac{1}{2}x^2+3x^4-3x^2-3-3x^4-x^3+4x^2-1,5x^3+3x^4-2x-1\\ P\left(x\right)-Q\left(x\right)=\left(-2x-2x\right)+\left(\frac{1}{2}x^2-3x^2+4x^2\right)+\left(3x^4-3x^4+3x^4\right)+\left(-3-1\right)+\left(-x^3-1,5x^3\right)\\ P\left(x\right)-Q\left(x\right)=-4x+\frac{3}{2}x^2+3x^4-4-\frac{5}{2}x^3\)
\(R\left(x\right)+P\left(x\right)-Q\left(x\right)+x^2=2x^3-\frac{3}{2}x+1\\ \Rightarrow R\left(x\right)+\left(P\left(x\right)-Q\left(x\right)\right)+x^2=2x^3-\frac{3}{2}x+1\\ \Rightarrow R\left(x\right)-4x+\frac{3}{2}x^2+3x^4-4-\frac{5}{2}x^3+x^2=2x^3-\frac{3}{2}x+1\\ \Rightarrow R\left(x\right)-4x+\left(\frac{3}{2}x+x^2\right)+3x^4-4-\frac{5}{2}x^3=2x^3-\frac{3}{2}x+1\\ \Rightarrow R\left(x\right)-4x+\frac{5}{2}x^2+3x^4-4-\frac{5}{2}x^3=2x^3-\frac{3}{2}x+1\\ \Rightarrow R\left(x\right)=2x^3-\frac{3}{2}x+1+4x-\frac{5}{2}x^2-3x^4+4+\frac{5}{2}x^3\\ \Rightarrow R\left(x\right)=\left(2x^3+\frac{5}{2}x^3\right)+\left(\frac{-3}{2}x+4x\right)+\left(1+4\right)-\frac{5}{2}x^2-3x^4\\ \Rightarrow R\left(x\right)=\frac{9}{2}x^3+\frac{5}{2}x+5-\frac{5}{2}x^2-3x^4\)
\(A\left(x\right)=2x^4-3x^3+\dfrac{1}{2}-4x\). Tìm đa thức B(x) và đa thức C(x), sao cho:
a) \(A\left(x\right)+B\left(x\right)=4x^5-2x^2-1\)
b)\(A\left(x\right)-C\left(x\right)=2x^3\)
a) B(x)=\(4x^5\) -\(2x^4\) +\(3x^3\) -\(2x^2\) +\(4x\) +\(\dfrac{-1}{2}\)
b) C(x)=\(2x^4-x^3+\dfrac{1}{2}+4x\)
CHO CÁC ĐA THỨC :
\(f\left(x\right)=5x^4+3x^2+x-1;h\left(x\right)=-x^4+3x^3-2x^2-x+2\)
\(g\left(x\right)=2x^4-x^3+x^2+2x+1\)
HỎI ĐA THỨC \(f\left(x\right)+h\left(x\right)-g\left(x\right)\)=?
\(f\left(x\right)+h\left(x\right)-g\left(x\right)\)
\(=\left(5x^4+3x^2+x-1\right)+\left(-x^4+3x^3-2x^2-x+2\right)\)
\(-\left(2x^4-x^3+x^2+2x+1\right)\)
\(=\left(5x^4-x^4-2x^4\right)+\left(3x^3+x^3\right)+\left(3x^2-2x^2-x^2\right)\)
\(+\left(x-x-2x\right)+\left(-1+2-1\right)\)
\(=2x^4+4x^3-2x\)
Cho hai đa thức: \(P\left(x\right)=x^4+5x^3-4x^2+3x+a\) và \(Q\left(x\right)=-3x^4+4x^3-3x^2+2x+b\). Tìm giá trị của a,b để hai đa thức P(x) và Q(x) có nghiệm chung là x = 1/2
Thay x=1/2 vào P(x): \(a+\frac{19}{16}=0\)\(\Leftrightarrow a=\frac{-19}{16}\)
Thay x=1/2 vào Q(x):\(b+\frac{9}{16}=0\Leftrightarrow b=\frac{-9}{16}\)
Cho đa thức: \(A\left(x\right)=3x^2+5x-4x^4-x^3+x^2+7\)
\(B\left(x\right)=3x^3-4x^4+8-2x^3-2x^2+x\)
a) Tìm đa thức C(x) sao cho B(x)+C(x)=A(x)
b) Tìm nghiệm của đa thức C(x)