Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Vũ Đức Khải
Xem chi tiết
Nguyễn Huy Tú
19 tháng 7 2021 lúc 10:17

3b : Ta có : \(P=2x\left(x+y-1\right)+y^2+1=2x^2+2xy-2x+y^2+1\)

\(=x^2+2xy+y^2+x^2-2x+1=\left(x+y\right)^2+\left(x-1\right)^2\)

Vậy biểu thức luôn nhận giá trị ko âm với mọi x ; y 

Lê Đăng Khôi
Xem chi tiết
HT.Phong (9A5)
27 tháng 7 2023 lúc 19:34

\(M=-2024x^{2023}-2y-\dfrac{1}{2}x^3y^2-10+2021^{2023}+y-1\)

\(M=\left(-2024x^{2023}+2024x^{2023}\right)-\left(2y-y\right)-\left(10+1\right)-\dfrac{1}{2}x^3y^2\)

\(M=-y-11-\dfrac{1}{2}x^3y^2\)

Thay x=-2, y=-1 vào M ta có:

\(M=-\left(-1\right)-11-\dfrac{1}{2}\cdot\left(-2\right)^3\cdot\left(-1\right)^2=-6\)

Ngọc Bị Bủh
Xem chi tiết
Nguyễn Lê Phước Thịnh
13 tháng 4 2021 lúc 22:11

a) Ta có: \(A=x^6+5+xy-x-2x^2-x^5-xy-2\)

\(=x^6-x^5-2x^2-x+3\)

Bậc là 6

Nguyễn Lê Phước Thịnh
13 tháng 4 2021 lúc 22:12

b) Thay x=-1 và y=2018 vào A, ta được:

\(A=\left(-1\right)^6-\left(-1\right)^5-2\cdot\left(-1\right)^2-\left(-1\right)+3\)

\(=1-\left(-1\right)-2\cdot1+1+3\)

\(=1+1-2+1+3\)

=4

Nguyễn Huy Tú
13 tháng 4 2021 lúc 22:15

a, \(A=x^6+5+xy-x-2x^2-x^5-xy-2=x^6-x^5-2x^2-x+3\)

Bậc 6 

b, Với x = -1 suy ra : \(1-\left(-1\right)-2-\left(-1\right)+3=1+1-2+1+3=4\)

c, Vì x = 1 là nghiệm của đa thức A nên Thay x = 1 vào đa thức A ta được 

\(1-1-2-1+3=0\)( luôn đúng )

Vậy ta có đpcm 

 

Kaito1412_TV
Xem chi tiết
Tuấn Anh
Xem chi tiết
Nguyễn Ngọc k10
Xem chi tiết
YangSu
20 tháng 6 2023 lúc 12:36

\(a,A+B=x^2-3xy-y^2+1+2x^2+y^2-7xy-5\)

\(=x^2+2x^2+\left(-3xy-7xy\right)-y^2+y^2+1-5\)

\(=3x^2-10xy-4\)

\(b,C+A-B=0\Rightarrow C=B-A\)

\(=\left(2x^2+y^2-7xy-5\right)-\left(x^2-3xy-y^2+1\right)\)

\(=2x^2+y^2-7xy-5-x^2+3xy+y^2-1\)

\(=x^2+2y^2-4xy-6\)

\(c,x=2;y=-\dfrac{1}{2}\Rightarrow C=2^2+2\left(-\dfrac{1}{2}\right)^2-4.2.\left(-\dfrac{1}{2}\right)-6\)

\(\Rightarrow C=\dfrac{5}{2}\)

Chung Tran
Xem chi tiết
Akai Haruma
13 tháng 8 2021 lúc 17:13

Bài 1:

Ta thấy: $(x+\frac{1}{2})^2\geq 0$ với mọi $x\in\mathbb{R}$

$\Rightarrow (x+\frac{1}{2})^2+\frac{5}{4}\geq \frac{5}{4}$

Vậy gtnn của biểu thức là $\frac{5}{4}$

Giá trị này đạt tại $x+\frac{1}{2}=0\Leftrightarrow x=-\frac{1}{2}$

Akai Haruma
13 tháng 8 2021 lúc 17:15

Bài 2:

$x+y-3=0\Rightarrow x+y=3$
\(M=x^2(x+y)-(x+y)x^2-y(x+y)+4y+x+2019\)

\(=-3y+4y+x+2019=x+y+2019=3+2019=2022\)

Nguyễn Ngọc 4397
Xem chi tiết
Trang Nguyễn
12 tháng 6 2021 lúc 11:23

a. \(A+B=x^2-2x-y^2+3y-1-2x^2+3y^2-5x+y+3\)

\(=\left(x^2-2x^2\right)-\left(2x+5x\right)+\left(3y^2-y^2\right)+\left(3y+y\right)+\left(3-1\right)\)

\(=2y^2+4y-x^2-7x+2\)

Thay `x = 2` và `y = -1` vào `A + B` ta được:

\(2.\left(-1\right)^2+4.\left(-1\right)-2^2-7.2+2=-18\)

b. \(A-B=x^2-2x-y^2+3y-1-\left(-2x^2+3y^2-5x+y+3\right)\)

\(=x^2-2x-y^2+3y-1+2x^2-3y^2+5x-y-3\)

\(=\left(x^2+2x^2\right)+\left(5x-2x\right)-\left(y^2+3y^2\right)+\left(3y-y\right)-\left(1+3\right)\)

\(=3x^2+3x-4y^2+2y-4\)

Thay `x = -2` và `y = 1` vào `A - B` ta được:

\(3.\left(-2\right)^2+3.\left(-2\right)-4.1^2+2.1^2-4=0\)

nguyen thi lan
Xem chi tiết
Phạm Ngọc Thạch
25 tháng 5 2015 lúc 7:38

x= -5 phải ko bn để mình còn giải 

Huỳnh Đức Lê
25 tháng 5 2015 lúc 8:45

1.Thay x=5,y=3 vào đa thức P,ta được:

2x(x+y-1)+y^2+1

=2.5(2+3-1)+3^2+1

=10.4+9+1

=40+(9+1)

=50

huyhoang
26 tháng 5 2015 lúc 7:07

.Thay x=5,y=3 vào đa thức P,ta được:

2x(x+y-1)+y^2+1

=2.5(2+3-1)+3^2+1

=10.4+9+1

=40+(9+1)

=50

đào mai thu
Xem chi tiết
Kaito1412_TV
31 tháng 10 2018 lúc 22:07

Trả lời hộ mình với, mình k cho