Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Rhider
Xem chi tiết
Hồ Nhật Phi
6 tháng 2 2022 lúc 18:16

f'(x)>0 với mọi x khác -8, suy ra hàm số đã cho đồng biến trên [0;3].

Giá trị nhỏ nhất của f(x) trên [0;3] là (-m^2)/8. Ta có: (-m^2)/8=2.

Suy ra, không có giá trị nào của số thực m thỏa yêu cầu đề bài.

vvvvvvvv
Xem chi tiết
hạ băng
Xem chi tiết
Hồng Phúc
15 tháng 8 2021 lúc 13:07

a, \(y=sin^2x-2sinx+3cos^2x\)

\(=sin^2x-2sinx+3\left(1-sin^2x\right)\)

\(=3-2sinx-2sin^2x\)

Đặt \(sinx=t\left(t\in\left[0;1\right]\right)\)

\(\Rightarrow y=f\left(t\right)=3-2t-2t^2\)

\(\Rightarrow y_{min}=min\left\{f\left(0\right);f\left(1\right)\right\}=-1\)

\(y_{max}=max\left\{f\left(0\right);f\left(1\right)\right\}=3\)

Hồng Phúc
15 tháng 8 2021 lúc 13:33

b, \(y=sinx-cosx+sin2x+5\)

\(=sinx-cosx-\left(sinx-cosx\right)^2+6\)

Đặt \(sinx-cosx=t\left(t\in\left[-\sqrt{2};\sqrt{2}\right]\right)\)

\(\Rightarrow y=f\left(t\right)=-t^2+t+6\)

\(\Rightarrow y_{min}=min\left\{f\left(-\sqrt{2}\right);f\left(0\right)\right\}=4-\sqrt{2}\)

\(y_{max}=max\left\{f\left(-\sqrt{2}\right);f\left(0\right)\right\}=6\)

Hồng Phúc
15 tháng 8 2021 lúc 13:42

c, \(y=sinx-cosx+sinx.cosx-3\)

\(=sinx-cosx-\dfrac{1}{2}\left(sinx-cosx\right)^2-\dfrac{5}{2}\)

Đặt \(sinx-cosx=t\left(t\in\left[-\sqrt{2};\sqrt{2}\right]\right)\)

\(\Rightarrow y=f\left(t\right)=-\dfrac{1}{2}t^2+t-\dfrac{5}{2}\)

\(\Rightarrow y_{min}=min\left\{f\left(-\sqrt{2}\right);f\left(\sqrt{2}\right);f\left(1\right)\right\}=-\dfrac{7+2\sqrt{2}}{2}\)

\(y_{max}=max\left\{f\left(-\sqrt{2}\right);f\left(\sqrt{2}\right);f\left(1\right)\right\}=-2\)

Ngô Thành Chung
Xem chi tiết
Akai Haruma
19 tháng 1 2021 lúc 1:12

Lời giải:

a) 

Áp dụng BĐT Bunhiacopxky:

\((y-2x)^2\leq (16y^2+36x^2)(\frac{1}{16}+\frac{1}{9})=9.\frac{25}{144}\)

\(\Rightarrow \frac{-5}{4}\leq y-2x\leq \frac{5}{4}\Rightarrow \frac{15}{4}\leq y-2x+5\leq \frac{25}{4}\)

Vậy $A_{\min}=\frac{15}{4}$ và $A_{\max}=\frac{25}{4}$

b) 

Áp dụng BĐT Bunhiacopxky:

\((2x-y)^2\leq (\frac{x^2}{4}+\frac{y^2}{9})(16+9)=25\)

\(\Rightarrow -5\leq 2x-y\leq 5\Leftrightarrow -7\leq 2x-y-2\leq 3\)

Vậy $B_{min}=-7; B_{\max}=3$

Sách Giáo Khoa
Xem chi tiết
ngonhuminh
22 tháng 4 2017 lúc 10:05

\(f\left(x\right)=\dfrac{2x-1}{x-3}=\dfrac{2\left(x-3\right)+5}{x-3}=1+\dfrac{5}{\left(x-3\right)}\)

f(x) có dạng \(y=\dfrac{5}{x}\Rightarrow\) f(x) luôn nghịch biến

Tất nhiên bạn có thể tính đạo hàm --> f(x) <0 mọi x khác -3

f(x) luôn nghich biến [0;2] < -3 thuộc nhánh Bên Phải tiệm cận đứng

\(\Rightarrow\left\{{}\begin{matrix}Max=f\left(0\right)=\dfrac{1}{3}\\Min=f\left(2\right)=-3\end{matrix}\right.\)

lê khanh
Xem chi tiết
fox2229
8 tháng 12 2021 lúc 19:10

a)Vì |x-1/2|≥0

|x-1/2|-3≥0-3

A=|x-1/2|-3≥-3

=>A≥-3

Dấu ''='' xảy ra khi

x-1/2=0

x=0+1/2

x=1/2

Vậy GTNN của biểu thức đã cho là -3 khi  x=1/2

b)

Vì |x-4|≥0

-|x-4|≤0

=>2/3-|x-4|≤2/3-0

2/3-|x-4|≤2/3

=>B=2/3-|x-4|≤2/3

B≤2/3

Dấu ''='' xảy ra khi

x-4=0

x=0+4

x=4

Vậy GTLN của biểu thức là 2/3 khi x=4

 

Nezuko Kamado
Xem chi tiết
Nezuko Kamado
31 tháng 10 2021 lúc 13:35

Ai lm đc câu nào thì giúp mk với , cảm ơn !!

Nguyễn Hoàng Minh
31 tháng 10 2021 lúc 13:39

\(A=\left|\dfrac{3}{5}-x\right|+\dfrac{1}{9}\ge\dfrac{1}{9}\\ A_{min}=\dfrac{1}{9}\Leftrightarrow x=\dfrac{3}{5}\\ B=\dfrac{2009}{2008}-\left|x-\dfrac{3}{5}\right|\le\dfrac{2009}{2008}\\ B_{max}=\dfrac{2009}{2008}\Leftrightarrow x=\dfrac{3}{5}\\ C=-2\left|\dfrac{1}{3}x+4\right|+1\dfrac{2}{3}\le1\dfrac{2}{3}\\ C_{max}=1\dfrac{2}{3}\Leftrightarrow\dfrac{1}{3}x=-4\Leftrightarrow x=-12\)

Nguyễn Lê Phước Thịnh
31 tháng 10 2021 lúc 13:48

a: \(A=\left|\dfrac{3}{5}-x\right|+\dfrac{1}{9}\ge\dfrac{1}{9}\forall x\)

Dấu '=' xảy ra khi \(x=\dfrac{3}{5}\)

Nguyễn Thanh Vân
Xem chi tiết
Nguyễn Đức Trí
26 tháng 8 2023 lúc 16:43

\(C=-2\left|\dfrac{1}{3}x+4\right|+1\dfrac{2}{3}\)

\(\Rightarrow C=-2\left|\dfrac{1}{3}x+4\right|+\dfrac{5}{3}\)

mà \(-2\left|\dfrac{1}{3}x+4\right|\le0,\forall x\)

\(\Rightarrow C=-2\left|\dfrac{1}{3}x+4\right|+\dfrac{5}{3}\le\dfrac{5}{3}\)

\(\Rightarrow GTLN\left(C\right)=\dfrac{5}{3}\left(tạix=-12\right)\)

Sách Giáo Khoa
Xem chi tiết
ngonhuminh
21 tháng 4 2017 lúc 18:37

\(f'\left(x\right)=1-\dfrac{9}{x^2}\)

\(f'\left(x\right)=0\Rightarrow x=\pm3\)

\(f''\left(x\right)=\dfrac{18}{x^3}\) \(\left\{{}\begin{matrix}f''\left(3\right)>0\\f''\left(-3\right)< 0\end{matrix}\right.\) vậy f(x) đạt cực tiểu tại x=3 trong khoảng đang xét hàm liên tục [2,4]

\(f\left(3\right)=3+\dfrac{9}{3}=6\)

\(\left\{{}\begin{matrix}f\left(2\right)=2+\dfrac{9}{2}=\dfrac{13}{2}\\f\left(4\right)=4+\dfrac{9}{4}=\dfrac{25}{4}< \dfrac{13}{2}\end{matrix}\right.\)

kết luận

GTLN f(x) trên đoạn [2,4] =\(\dfrac{13}{2}\)

GTNN f(x) trên đoạn [2,4] = \(6\)

Lê Nhật Phương
4 tháng 6 2018 lúc 22:34

\(f'\left(x\right)=1-\dfrac{9}{x^2}=\dfrac{x^2-9}{x^2}\)

\(f'\left(x\right)=0\Leftrightarrow x=\pm3\)

Hàm số nghịch biến trong các khoảng (-3; 0), (0; 3) và đồng biến trong các khoảng \(\left(-\infty;3\right)\left(3;+\infty\right)\)

Ta có bảng biến thiên:
x \(-\infty;-3;0\) \(2;3;4;+\infty\)
f'(x) + 0 - - - 0 + +
f(x) yCĐ yCT +∞

Ta có: \(\left[2;4\right]\subset\left(0;+\infty\right);\left[{}\begin{matrix}f\left(2\right)=6,5\\f\left(3\right)=6\\f\left(4\right)=6,25\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}\min\limits_{\left[2;4\right]}f\left(x\right)=f\left(3\right)=6\\\max\limits_{\left[2;4\right]}f\left(x\right)=f\left(2\right)=6,5\end{matrix}\right.\)

Lê Trâm
22 tháng 10 2019 lúc 21:38

GTLN= 13/2

GTNN= 6

mình giải trên máy tính nhanh hơn bạn ạ

Khách vãng lai đã xóa
vvvvvvvv
Xem chi tiết