\(f'\left(x\right)=1-\dfrac{9}{x^2}\)
\(f'\left(x\right)=0\Rightarrow x=\pm3\)
\(f''\left(x\right)=\dfrac{18}{x^3}\) \(\left\{{}\begin{matrix}f''\left(3\right)>0\\f''\left(-3\right)< 0\end{matrix}\right.\) vậy f(x) đạt cực tiểu tại x=3 trong khoảng đang xét hàm liên tục [2,4]
\(f\left(3\right)=3+\dfrac{9}{3}=6\)
\(\left\{{}\begin{matrix}f\left(2\right)=2+\dfrac{9}{2}=\dfrac{13}{2}\\f\left(4\right)=4+\dfrac{9}{4}=\dfrac{25}{4}< \dfrac{13}{2}\end{matrix}\right.\)
kết luận
GTLN f(x) trên đoạn [2,4] =\(\dfrac{13}{2}\)
GTNN f(x) trên đoạn [2,4] = \(6\)
\(f'\left(x\right)=1-\dfrac{9}{x^2}=\dfrac{x^2-9}{x^2}\)
\(f'\left(x\right)=0\Leftrightarrow x=\pm3\)
Hàm số nghịch biến trong các khoảng (-3; 0), (0; 3) và đồng biến trong các khoảng \(\left(-\infty;3\right)\left(3;+\infty\right)\)
Ta có bảng biến thiên:x | \(-\infty;-3;0\) | \(2;3;4;+\infty\) |
f'(x) | + 0 - | - - 0 + + |
f(x) |
Ta có: \(\left[2;4\right]\subset\left(0;+\infty\right);\left[{}\begin{matrix}f\left(2\right)=6,5\\f\left(3\right)=6\\f\left(4\right)=6,25\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}\min\limits_{\left[2;4\right]}f\left(x\right)=f\left(3\right)=6\\\max\limits_{\left[2;4\right]}f\left(x\right)=f\left(2\right)=6,5\end{matrix}\right.\)
GTLN= 13/2
GTNN= 6
mình giải trên máy tính nhanh hơn bạn ạ