Tìm giá trị lớn nhất và giá trị nhỏ nhất của hàm số \(f\left(x\right)=x+\dfrac{9}{x}\) trên đoạn \(\left[2;4\right]\) ?
Tìm tất cả các giá trị \(m\) để giá trị nhỏ nhất của hàm số:
1/ \(y=\dfrac{x+m}{x-1}\) trên \(\left[2;4\right]\) bằng 3.
2/ \(y=2x^3-3x^2-m\) trên \(\left[-1;1\right]\) bằng 1.
3/ \(y=\left|x^3-3x^2+m\right|\) trên \(\left[0;3\right]\) bằng 2.
Cho hàm số \(f\left(x\right)=\dfrac{x-m^2}{x+8}\)với m là tham số cực . Tìm giá trị lớn nhất của m để hàm số có giá trị nhỏ nhất trên đoạn \(\left[0;3\right]=2\)
Tìm giá trị lớn nhất và giá trị nhỏ nhất của hàm số \(f\left(x\right)=\dfrac{2x-1}{x-3}\) trên đoạn \(\left[0;2\right]\) ?
Tính giá trị lớn nhất, giá trị nhỏ nhất của hàm số:
\(y=x^3-3x^2-9x+35\) trên các đoạn [-4; 4] và [0;5] ;
Tính giá trị lớn nhất, giá trị nhỏ nhất của hàm số:
a) \(y=x^3-3x^2-9x+35\) trên các đoạn [-4; 4] và [0;5] ;
b) \(y=x^4-3x^2+2\) trên các đoạn [0;3] và [2;5] ;
c) \(y=\dfrac{2-x}{1-x}\) trên các đoạn [2;4] và [-3;-2] ;
d) \(y=\sqrt{5-4x}\) trên đoạn [-1;1] .
Tìm tất cả giá trị \(m\) để giá trị lớn nhất của hàm số:
1/ \(y=\dfrac{2x+m}{x+1}\) trên \(\left[0;1\right]\) bằng 2.
2/ \(y=\left|x^3-3x^2+m\right|\) trên \(\left[0;3\right]\) bằng 5.
3/ \(y=\left|\dfrac{x^2+mx+m}{x+1}\right|\) trên \(\left[1;2\right]\) bằng 2.
4/ \(y=\left|\dfrac{1}{4}x^4-\dfrac{19}{2}x^2+30x+m-20\right|\) trên \(\left[0;2\right]\) không vượt quá 20.
Tìm tất cả các giá trị của m>1 để giá trị lớn nhất của hàm số f(x)=(2.cănx +m)/(căn(x+1)) trên đoạn [0,4] không lớn hơn 3
Tìm giá trị lớn nhất và giá trị nhỏ nhất của hàm số :
\(f\left(x\right)=\frac{x^2}{2}-4\ln\left(3-x\right)\) trên đoạn \(\left[-2;1\right]\)